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ABSTRACT 
For a scalable video coder to cover a wide range of bit-rates, 
e.g. from mobile video streaming applications to TV broad-
casting, it is essential that motion information presents some 
form of scalability. In this paper we propose a new accu-
racy-scalable motion codec in a wavelet-based spatio-SNR-
temporal-scalable framework. It allows to decode a reduced 
amount of motion information at sub-resolutions, taking 
advantage that motion compensation requires less and less 
accuracy at lower spatial resolutions. This new motion co-
dec proves its efficiency in our full-scalable framework, by 
improving significantly video quality at sub-resolutions 
without inducing any noticeable penalty at high bit-rates. 

1. INTRODUCTION 

During its 66th meeting in Brisbane, Australia, the MPEG 
community published a Call for Proposals (CfP) on Scalable 
Video Coding, which can be seen as the starting point of a 
standardization process for scalable video coding [1]. Evi-
dence had indeed been proven that scalable coding technolo-
gies can match single-layer coding performances, while ad-
dressing several applicative requirements that can not be 
easily fulfilled by non-scalable technologies (Cf. [2]). The 
main test of this Call for Proposal consists in a single encod-
ing of HD video material into a single embedded bit-stream, 
then in its decoding at various resolutions, frame-rates and 
bit-rates, from 6Mbps (high-quality TV) down to QCIF 
64Kbps (mobile video streaming)  

For a scalable video coder to remain efficient over such a 
wide range of bit-rates and resolutions, some form of scal-
ability must exist in the motion information. Since prior Call 
for Evidence (CfE) on scalable video coding, several solu-
tions have been proposed. 

Responding to CfE, Hang et al. proposed in [3] a scalable 
motion coder coupled with famous (2D+t)WT scheme MC-
EZBC. Each motion field was divided into a base layer 
(16x16 blocks and above) and an enhancement layer (smaller 
blocks), both having approximately the same cost. Although 
the adequate number of enhancement layers was determined 
manually and empirically for each bit-rate, Hang et al. 
proved that their scalable motion codec can significantly 
improve MC-EZBC performances at low bit-rates. 

Another solution to introduce natural scalability within 
motion information is to perform the spatial transform first, 
then estimate the displacement in each sub-band independ-
ently, before processing e.g. wavelet-domain motion-
compensated temporal filtering [5], wavelet-domain predic-
tion, or sophisticated contextual entropy coding [4]. In [5], 
Andreopoulos et al. proposed an in-band MCTF scheme, 
based on overcomplete wavelet transform, that outperformed 
spatial-domain MCTF (with full-pel accurate ME/MC and 
fixed block size). 

In [6], Taubman and Secker showed that the video distor-
tion introduced by quantizing motion information is roughly 
additive to the distortion due to texture quantization. Using 
JPEG2000-like techniques (reversible wavelet transform and 
fractional bit-plane coding), the authors built a rate-scalable 
motion bit-stream and determined empirically an optimal 
balance between motion and texture bit-budgets. Neverthe-
less, performances of this solution may be limited by the 
amount of motion in such a 5/3 MCTF scheme with triangu-
lar mesh model. 

Our proposed method is far less complex than previous 
approaches and give promising results. This paper is organ-
ized as follows. The global scalable video coding framework 
is described in Section 2. In Section 3 we investigate the 
scalable motion coding issue, and propose a new layered 
motion representation according to spatial resolution. Ex-
perimental results in Section 4 show that the over-cost intro-
duced by scalability is negligible at high bit-rates. Further-
more, at lower spatial resolution, significant quality im-
provement is perceived in comparison with non-scalable 
coding of motion. 

2. GLOBAL FRAMEWORK 

This work is an improvement of TWAVIX (for WAvelet-
based VIdeo Coder with Scalability), whose performances 
have been proven comparable to state-of-the-art scalable 
solutions (Cf [7]). 

2.1 TWAVIX overall architecture : MCTF + JPEG2000 

TWAVIX is a (2D+t)WT coding scheme, briefly described in 
[8]. Like MC-EZBC, it performs first temporal analysis at 
full resolution, then spatial analysis and finally entropy cod-
ing of both motion and texture (see Fig. 1). 
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Figure 1: Overall architecture of TWAVIX 

Motion is estimated thanks to a fast, eighth-pel accurate, 
hierarchical variable-size block matching algorithm, from 
256x256 blocks down to 4x4 blocks. Multi-level motion field 
quad-trees are then pruned according to rate-distortion slopes 
of each node. 

Depending on the video source, temporal analysis can 
consist in Haar MCTF, Backward or Forward Prediction, or 
Intra Coding. Regarding spatial analysis, texture coding and 
bit-stream layering, TWAVIX is coupled with JPEG2000 
VM8.0 implementation. 

Note that rather than adjust an average bit-rate over the 
entire encoded sequence, TWAVIX performs rate allocation 
independently for each GOF. This is far more realistic for 
applications involving varying bandwidth, such as Video 
streaming over heterogeneous IP networks and Mobile 
streaming video (Cf. [2]). 

As regards motion coding, TWAVIX classically uses a 
non-scalable context-based adaptive arithmetic coding, in-
spired from [9]. Motion fields are computed and encoded at 
full spatial resolution into a single-layer bit-stream. 

2.2 Motion compensation at lower spatial resolution 

Let us stress that even if motion estimation is performed at 
original resolution, TWAVIX, unlike many scalable codecs in 
the literature, does not systematically reconstruct full resolu-
tion frames before performing temporal synthesis. All com-
putations are processed at the real decoded resolution, by 
rescaling original motion field quad-tree structure and vector 
components. This choice is motivated by reality of applica-
tions (Cf. [2]) : we do not imagine a cellular phone or a PDA 
can afford to perform motion compensation at SD or HD 
resolution. 

This means that motion compensation at decoder side will 
not systematically be processed at the same resolution as at 
encoder side. Consequently sub-pel interpolation demands a 
special care as regards filter size for each sub-resolution. Ac-
tually we use 8-tap FIR filters at original resolution and bi-
linear interpolation at lower resolutions. 

3. SCALABLE MOTION CODING 

In state-of-the-art coding schemes, motion parameters are 
usually coded losslessly as side-information. The tradeoff 
between the volume of information and the efficiency of mo-
tion compensation and energy compaction has been widely 
recognized. In non-scalable coders, various techniques have 
been used to optimize the number of bits spent on motion for 

a target bit-rate, but in scalable coding the target bit-rate is 
unknown. 

3.1 Natural motion scalability : accuracy & block size 

Optimally, at decoder side, rate-adapted motion subsets 
should be available to maximize video quality. However, in a 
(2D+t)WT scheme, temporal filtering has been performed 
once with full resolution motion field (Cf. Fig. 2). The point 
is therefore to deduce subsets from this original resolution 
motion field, that will allow the decoder to preserve a rea-
sonable motion/texture ratio, without penalizing too much 
motion compensation quality. 

 
Figure 2: Spatial scalability in a (2D+t)WT framework 

At low bit-rates, video is usually decoded at a reduced 
spatial resolution, so hand high-precision motion vectors are 
virtually useless. Besides, smallest blocks tend to vanish. 

These statements could motivate to apply on motion in-
formation the same coding techniques as those used for tex-
ture samples (spatially-scalable transform and progressive 
coding), like in [6]. Let us first point out that unlike the trian-
gular mesh motion model used by Taubman & Secker, our 
variable-size block-based motion description does not suit a 
spatial transform, but presents inherent sparseness properties 
thanks to pruning. 

Let us moreover note that a three-resolution scenario (e.g. 
QCIF-CIF-SD) is not sufficient to take advantage of block-
size scalability. Even smallest (4x4) blocks of SD resolution 
do not disappear at QCIF resolution, at least for luminance. 
In addition, discarding blocks that should still exist induces 
annoying visual artifacts. So in such a configuration, it seems 
relevant to rely on accuracy scalability. 

3.2 Accuracy-scalable motion coding 

Having investigated the impact of accuracy at decoder side, it 
appears that its utility decreases with spatial resolution. Once 
spatially filtered and decimated, temporal low and high fre-
quencies do not benefit from the sub-pel accuracy that has 
been used at original resolution during temporal analysis. 

This leads us to parting the bit-stream into accuracy lay-
ers. But unlike in [6] where each bit-plane of motion is di-
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vided in several coding passes, we only introduce as many 
truncature points as decoded resolutions, in order to confine 
scalability over-cost. 

For a three-level scenario, the optimal layering seems to 
consist of two enhancement layers of one-level accuracy, and 
a base layer of the corresponding approximate field. Figure 3 
shows an example corresponding to � pixel-accurate motion 
estimation with SD video source. 

 
Figure 3: Example of three-level accuracy-scalable motion cod-

ing-decoding 

After having encoded once the quad-tree structure, predic-
tion residue of each vector of the base layer are encoded with 
our context-based adaptive arithmetic coder inspired from 
[9]. Then enhancement layers are successively similarly en-
coded, but without prediction coding since these layers can 
be assimilated with noise. 

This simple and systematic technique allows to perform 
the same level of sub-pel interpolation through all decoding 
resolutions, while saving some bit-budget for lower resolu-
tions. For full resolution, a certain overcost is observed in 
comparison with non-scalable coding. This may be legiti-
mately interpreted as the cost of scalability. Indeed, scalabil-
ity inevitably lowers prediction and entropy coding effi-
ciency. 

4. EXPERIMENTAL RESULTS 

Results provided in this section correspond to CfP scenario 1 
(Cf. [1]). They are obtained by encoding once 704x576 60fps 
sequences CITY and ICE, then performing the decoding at 
the various bit-rates, frame-rates and resolutions described in 
Table 4. 

 
Table 4: CfP scenario 1 spatio-SNR-temporal scalability tests 

Figure 5 compares motion budgets in percentage at each 
of these configurations for ICE sequence, using our accu-
racy-scalable motion coder and a single-layer motion coder. 

 
Figure 5: Motion bit-budget percentage in global bit-stream for 

ICE sequence 

For reasons of brevity, we present here average PSNRs on 
luminance component, with, for clarity over the wide range 
of bit-rates, a logarithmic abscissa scale (see Figures 6 and 7 
respectively for ICE and CITY). 

 
Figure 6: PSNR results for ICE sequence 

 
Figure 7: PSNR results for CITY sequence 

As one shall notice, there are five different spatio-
temporal configurations in Table 4, namely QCIF 15fps, CIF 
15fps, CIF 30fps, SD 30fps, and SD 60fps. There are there-
fore five different reference sequences. These references 
have been defined in CfP procedure (see [1] Annex B). For 
lower spatial resolutions, these sequences are obtained by 
down-sampling using normative filters. For lower frame-
rates, reference sequences are obtained by frame-skipping, 
keeping even frames and discarding odd ones. 

Note that in terms of PSNR, these specifications do not 
favor (2D+t)WT solutions, which perform temporal filtering 

1981



instead of rough decimation, and spatial low-pass filtering 
does not match MPEG-4 filters. 

Finally, Figure 8 illustrates the visual quality gain that can 
be obtained with scalable motion codec in comparison with 
non-scalable one, at resolution QCIF 15fps, 96Kbps. 

 

  

Figure 8: CITY QCIF 15fps 96Kbps, 
with non-scalable motion codec (left), 

and with accuracy-scalable motion codec (right) 

 

5. CONCLUSION 

A new scalable video coding scheme has been presented, that 
introduces scalable coding of motion in addition to full-
scalable coding of texture. Motion codec principle consists of 
a layer partitioning according to accuracy in order to fit the 
level of spatial scalability. Although simple, this technique 
allows to cover a very wide range of bit-rates and improves 
significantly video quality at lower spatial resolutions with-
out any noticeable penalty at high bit-rates and full resolu-
tion. 
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