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In computer vision, two-dimensional shape classification is 
a complex and well known topic, often basic for three-
dimensional object recognition. Among different 
classification methods, this paper is focus on those that 
describe the 2D shape  by means of a sequence of d-
dimensional vectors which feeds a left to right hidden 
Markov model (HMM) recogniser. We propose a 
methodology for featuring the 2D shape with a sequence of 
vectors that take advantage of the HMM ability to spot the 
times when the infrequent vectors of the input sequence of 
vectors occur. This propierty is deduced by the repetition 
of the same HMM state during the moments in which the 
infrequent vectors is repeated. These HMM states are 
called by us synchronism states. The synchronization 
between the HMM and the input sequence of vectors can 
be improved thanks to adding an index component to the 
vectors. We show the recognition rate improvement of our 
proposal on selected applications. 
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Object recognition, shape modelling, and shape 
classification constitute active research areas in computer 
vision. Its applications has been found in various areas 
such as industrial part identification, target identification, 
character recognition, and medical diagnosis. Moreover, 
these issues are receiving a growing attention due to the 
advent of visual databases and the related necessity to 
retrieve information not only by using textual queries, but 
also on the basis of the image context. 

Shape classification requires a shape description 
method. Shape description refers to the methods that result 
in a numeric descriptor or shape descriptor vector from a 
given shape. The goal of the description is to uniquely 
characterize the shape using its shape descriptor vector. 
The required properties of a shape description are 
invariance to translation, scale and rotation. This is 
required because these three transformation do not change 
the shape of the object. 

Many techniques are based on the description of two-
dimensional (2D) aspects of the objects, and a wide 
literature can be found about 2-D shape classification and 
planar object recognition. Early techniques are available in 

Pavlidis [1] and Loncaric [2]. In this paper we will focus 
on boundary transform techniques which consist of 
transforming the 2D shape into a sequence of vectors. For 
example, a 2D shape can be represented by the sequence of 
radius (one dimensional vectors) from the shape centre of 
gravity to each pixel of the contour. Note that time series 
modelling tools can be used to describe 2D shape from its 
sequence transform. In conventional time series analysis, a 
major objective is to forecast, and the adequacy of the 
model fitted to a series may be judged by its forecast 
performance [3]. Taking into account that forecast with 
linear models is not useful here because it smoothes the 
corners of the shape, which have high information content 
according modern theories of visual perception [4]. 

Within this context, the use of hidden Markov models 
[5] for shape classification when the shape is described as a 
time series seems appropriate. Hidden Markov models 
represent a widespread approach to the modelling of 
sequences as they attempt to capture the underlying 
structure of a set symbol strings. 

The use of HMM for shape recognition has not been 
widely addressed. Only a few work have been found to 
have some similarities with our approach. In the first, He 
and Kundu [6] utilize HMMs to model shape contours 
through autoregressive (AR) coefficients. The uses of 
circular HMM for shape recognition improving scaling and 
deformation robustness is proposed at [7]. A particular 
HMM topology providing rotation invariance is the Pseudo 
2-D hidden Markov models (P2DHMM) proposed in [8].  
No particular original solution for the HMM design are 
proposed, perhaps because there are not a clear knowledge 
about what is the meaning of a +00� VWDWHV on shape 
recognition by hidden Markov models. 

The goal of this work is to deepen in the meaning of a 
HMM VWDWH on shape recognition and to use this knowledge 
to propose an efficient parameterization method. 

The rest of the paper is organized as follows. In Section 
2 the HMM-based 2D shape recogniser is described. 
Section 3 report our proposal on the conditions to fulfill by 
the sequence of vectors that feature the 2D shape in order 
to obtain a HMM-based high discriminative recognizer. 
Section 4 is devoted to synthetic experiment for illustrating 
the technique proposed at section 3. Finally, section 5 gives 
the experimental results and then comes the conclusion. 
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A Hidden Markov Model (HMM) is basically a stochastic 
finite state automaton, formally defined by the following 
elements [5]: a set 6={6� � «6L�«�6M�«�61} of status, a VWDWH�
WUDQVLWLRQ� SUREDELOLW\� GLVWULEXWLRQ� PDWUL[ $={DL�M`��� L�M�� 1�
representing the probability to go from state 6L to state 6M, a
set 9={Y�� �Y�� �«�YN�«�Y0�}of observation symbols where YN
use to be a G-dimensional vector (in the case of discrete 
HMM), an REVHUYDWLRQ� V\PERO�SUREDELOLW\� GLVWULEXWLRQ or 
HPLVVLRQ� PDWUL[� %={EM(YN) ��� N�� 0� }��� M�� 1� indicating the 
probability of emission of symbol YN when system state is 
6M, and an LQWLDO�VWDWH�SUREDELOLW\�GLVWULEXWLRQ ={ L}��� L��1,
representing probabilities of initial states. For convenience, 
we denote an HMM as a triplet ={$�%� }, which 
determine uniquely the model. 

Modelling a sequence of observation symbols, as will 
be our case, is usual to use a so called OHIW� WR�ULJKW�+00,
which has only partial state transition matrix such that 
DL�M=� M�L��M!L�VWHS, where VWHS is a constant usually equal 
to 1 or 2. 

There are three main problems involved with HMM 
use, which are described next. 

)LUVW�SUREOHP� Given thH +00� = {$��%�� }, and the 
observation symbol sequence 2 2�� 2�� «�2W«27 with 2W��9, we want to compute 3�2 �, i.e., the probability that 
the observation sequence 2 is generated by the model .
This is usually solved using the so called IRUZDUG�
EDFNZDUG�SURFHGXUH.

6HFRQG�SUREOHP: Given thH model = {$��%�� } and a 
observation sequence 2 2� � «��27, we want to determine 
the status sequence 4 = {T�, T� , … ,  TW … , T7 } TW��6
such that 3( 4 2� ) is maximum. In other words, we want 
to compute the most probably state sequence. There are 
several possible optimality criteria. For example, one 
possible optimality criterion is to choose the states TW which 
are individually most likely. To implement this solution, is 
defined the variable gamma ),()( OJ 26T3L LWW   which 

represents the probability of being in state 6L at time W.
Another criterion is to find the single best state sequence 
(path), based on dynamic programming methods, and is 
called the Viterbi Algorithm. 

7KLUG� SUREOHP: Given a set of / observation symbol 
sequences {2W}O={2��O� 2��O� «��2W�O� «��27�O��O}���O��/ with 2W�O��9, we want to determine = {$, B� } such that 
3({2W}O ) is maximized: this is the problem of training an 
HMM. The best-known method to perform this operation is 
the so called Baum-Welch reestimation technique. It is an 
iterative procedure based on Expectation-Maximization 
(EM) algorithm, and it tries to maximize the loglikelihood 
3(2 ) of the model with respect to the data.  

 
����+00�EDVHG��'�VKDSH�UHFRJQLVHU�
Consider using HMMs to build a 2D shape recogniser. 
Assume we have a set of & classes of 2D shapes and that 
each class is to be modelled by a distinct HMM. Further 

assume that for each class F�����F��&�� we have  a training 
set of /F samples. The value of /F must be sufficient great 
in order to know the intraclass and interclass variability. 
Each 2D shape sample is transformed to a sequence of 
vectors that describe the 2D shape. The sequence of 
vectors is mapped to observation symbol sequence by 
means of a vector quantiser (VQ) [5]. The VQ has as many 
codevectors as possible symbols, in fact the codevectors 
are the symbols, which are obtained by means of applying 

the K–means algorithm to the ¦  

&

F F/1 sequences of vector. 

So, an infrequent vector of sequence of vectors that 
describe a 2D shape originate an infrequent symbol of 
observation symbol sequence. 

In order to do 2D shape recognition, we must perform 
the following: 1) we must build an HMM for each class F
of 2D shapes, i.e., we must estimate the model parameters 
F {$F�%F� F` that optimise the likelihood of the training set 

observation symbol sequences for class F, and 2) for each 
unknown 2D shape sample which is to be recognized, we 
calculate its observation symbol sequence 2 and it will be 
assigned to the class that maximizes 3(2 F����F ����«�&.
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Since an efficient parameterization method has a strong 
dependence of the classifier chosen, it is crucial to deepen 
in the operation that carries out the HMM proposed.   

Suppose a observation string 2 2�� 2�� «�� 2W���2W«27 with 2W��9 and that we are in the instant W�� in the 
state 6L. The probability of remain in the state 6L at the next 
instant W depends on both the state transition probabilities 
{DLM`��� M�� 1 and the observation symbol probabilities 
{EM�2W�`���M��1�. If EL�2W�>>EM�2W� ���M��1�with M� L, the HMM 
will tend to remain in the same state despite of a low state 
transition probability DLL. On the other hand, if EL�2W�§�EM�2W�
the possibility of transition will be governed by $ matrix.   

That is to say, the observation sequence will remain in a 
state 6L while a symbol�with high probability in the state 6L
and low probability in the others is repeated in the 
sequence.  On the other hand, it will jump out when a 
symbol of equal probability in various states occurs. The 
first case indicates that such a symbol is an infrequent 
symbol and that it usually happens about the instant W
whereas the second case indicates that the symbol is very 
frequent and occurs in different W. It seems reasonable to 
think that the first sort of symbols is the one that endows 
the discriminative power of the HMM.  

Therefore, we can talk about a speed propagation way 
of the sequence through the HMM visible by means of the 
JDPPD matrix.  When the observable symbol sequence 2
spreads following the main propagation way, the HMM 
emission probability 3�2 � will be high.  In this case we 
can say that the HMM is synchronized with the input 
sequence. By synchronism we understand that the input 
sequence arrives in the state 6L at the instant W in which one 
of its infrequent symbols is very probable. This involves 
that the sequence remains in such a state as long as the 
symbol observed does not change. When the symbol 
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changes, the HMM will search again the stability trying to 
match another synchronism state. Hence, in the case of 
synchronism, the  JDPPD matrix presents a figure with 
stair appearance.  In other case, the JDPPD matrix presents 
a diffused structure as can be seen at fig. 1. 

Therefore, if we look for high discriminative HMM-
based 2D shape recognizer, each HMM F={$F�%F� F}
would have to have either different infrequent symbols 
YN�9 or be given at different states. This condition can be 
verified analysing % matrix. If the HMM do not match this 
condition, a new 2D shape description would be advisable. 

To improve the HMM ability of being synchronized 
with the observation symbol sequence, we propose to add a 
synchronism information to the sequence of vectors. This 
can be provided, for instance, by means of increasing the 
dimension of each vector of the sequence of vectors with a 
index. An example, with Matlab code, of adding a 
synchronization index to sequence of vectors is the next: 

 
% VHT is a matrix whose rows contain the vectors 
synchronized_seq = [seq linspace(0,1,size(seq,1))’]; 

 
Using this synchronization index, we have obtained 
improvements as much with 2D shape and with speech. 
Although this last application, and all those in which the 
vector of the sequence of vectors has a great dimension, 
require to emphasize the importance of the synchronization 
index when the likelihoods are claculated. 
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To verify the previous proposal, we propose the next 
experiment: 4 classes of objects with different contours are 
created. The class 1 objects are 5-sided almost regular 
polygons with vertexes of variable position.  The vertexes 
are located inside a ball of radio r centered in the vertex of 
the original regular polygon.  The position of the vertexes 

presents a uniform distribution inside the ball.  The class 2 
are almost regular polygons as those of the class 1 with 
vertexes connected by lines with Gaussian noise added.  
The class 3 is made of polygons as those of the class 1 
rotated such angle that the positions of their vertexes do 
not coincide with those of the class 1.  Finally, the class 4 
include stars of 5 tips with variable position of its external 
and internal vertexes. An example of each class is 
represented in the figure 2. The size of the images used in 
our experiments is of 30x30 pixels, and the radius ball  4.  

The sequence of vectors that represents the 2D shape is 
the radius from the center of gravity to each pixel of the 
contour. So, the infrequent vectors are those radius from 
the center to contour corners. The average length of signal 
sequence is 85 components. The initial point is the pixel 
with angle 0.  The initial point does not provide rotation 
invariance but it is considered appropriate for this paper 
purposes. 

Following  the above statements, the class 1 and 2 
should  be the only one to be confused by a synchronized 
HMM because they are the singles that share the same 
infrequent vectors at the same instants while the remainder 
should be well discriminated among themselves. 

To train the discrete HMM recognizer, 2000 samples of 
each class were generated, 1000 of them were used to train 
and the 1000 remainders for test.  The HMMs have 32 
symbols by state, and 20 states were chosen.  The four 
HMM have been trained with the iterative algorithm of 
Baum-Welch. The initialization method is the equal 
occupation of states [9] and the stop criterion is the fixed 
threshold equal to 0.001. The maximum number of 
iterations is  fixed to 30. The above-mentioned experiment 
was repeated with the synchronized sequence of vectors. 
The confusion matrix obtained at both experiments is 
showed at table I and confirms our above proposal. 

TABLE I. CONFUSSION MATRIX OF HMM RECOGNIZER FOR 

SYNTHETIC EXPERIMENT 
Without synchronization index With synchronization index 

1 2 3 4  1 2 3 4 
1 940 60 0 0 1 780 220 0 0 
2 100 900 0 0 2 160 840 0 0 
3 0 80 920 0 3 0 0 1000 0 cl

as
se

s 

4 0 0 0 1000

cl
as

se
s 

4 0 0 0 1000 
Recognition rate: 94%  Recognition rate: 90.5% 

�PF ENCUU�

�TF ENCUU� �VJ ENCUU�

�UV ENCUU�

)LJXUH����(DFK�FODVV�H[DPSOH�RI��SURSRVHG�H[SHULPHQW

��� ��� ��� ��� ��� ��� ��� ��� ���

�

��

��

��

��

��� ��� ��� ��� ��� ��� ��� ��� ���

�

��

��

��

Gamma matrix of no synchronized HMM

In
fr

eq
ue

nt
 

ve
ct

or
 v

al
ue

s  

)LJXUH����HIIHFW�RI�V\QFKURQL]DWLRQ�RQ�JDPPD�PDWUL[�
Synchronization index from 0 to 1 

 sequence of vectors  

Gamma matrix of synchronized HMM 

�

�

��

��

��

��� ��� ��� ��� ��� ��� ��� ��� ���

pa
ra

m
et

er
 v

al
ue

s 
 H

M
M

 s
ta

te
s 

 H
M

M
 s

ta
te

s 

763



Synchronized sequences of  vectors reduces the recognition 
rate because the synthetic experiment presents low 
variability and because the synchronization technique 
increases the confusion among the 1st and 2nd class. In real 
applications with higher variability the synchronization 
technique increase significantly the recognition rate (see 
Table II and III). 
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In order to verify the previous affirmations, experiments 
with handwritten numerals and letter will be carried out. 
Highlight that the objective is not to propose a digits 
recognizer in the state of the art but to verify the HMM 
way of operation described.  

 
����$SSOLFDWLRQ�WR�PDQXVFULSW�GLJLWV�
For hand printed digits, NIST special database 19 has been 
used. It consists of 409467 manuscript digits.  Partitions 
KVIB� to KVIB� (229639 digits) were used for the training, 
and two tests were done: the first with KVIB� (58645 digits) 
partition, and the second with KVIB� and KVIB� partitions 
(121183 digits). The envelopes of above-mentioned digits 
are  extracted and the sequence of vectors is built with the 
sequence of radius from the mass center of the envelope up 
to each outline pixel. As it can be easily verified through 
the probability density function of vectors that compose the 
sequence of vectors, the radius is not a good 2D shape 
descriptor for HMM-based recognized because the 
infrequent radius values are the same for the most of the 
classes and the great variability of the instants when occurs 
make almost impossible the synchronization task, despite 
the fact of using the synchronization component. 

In order to avoid the drawback of infrequent values 
coincidence we have applied the difference operator to the 
sequence of vectors. This transformation changes (of 
different way per class) the infrequent  vectors and their 
instants increasing the discriminative  HMM ability. The 
HMM are a left-to-right model of 40 states and 64 symbols 
per state trained as described in the synthetic case. 

Table II shows the recognition rate of the three 
experiments done: first working with radius as vectors, 
second working with polar coordinates  as vector (radiuses 
plus angle as synchronism index), and third working with 
the radiuses differentiate plus angles as synchronism index. 

7$%/(�,,�+00�6<1&+521286�5$7(�:,7+�',*,76�1,67�'%���
radius sequence KVIB�� KVIB�\��
no synchronized 23.89% 25.91% 
Synchronized 67.97% 77.64% 
differentiate & synchronized 81.38% 89.14% 

����5HVXOWV�ZLWK�KDQGSULQWHG�OHWWHU��
For hand printed letters, NIST special database 19 has been 
used. It consists of 220304 manuscript upper and 190998 
lower case manuscript letters. Partitions KVIB� to KVIB� 
(177792 upper and 155215 lower case manuscript letters) 
were used for the training. We have done two test, first 
with, KVIB� partition, and second with KVIB� and KVIB� 

partitions. The HMMs used are discrete, with a codebook 
of 64 code vectors and 40 states.  The left to right HMMs 
have been trained as described above. Results showed in 
table III confirm above statements. 

7$%/(�,,,�+00�6<1&+521286�5$7(�:,7+�/(77(56�1,67�'%���
 upper lower 
radius sequence KVIB�� KVIB�\�� KVIB�� KVIB�\��
no synchronized 8.52% 8.77% 11.46% 12.50% 
synchronized 62.65% 66.35% 61.45% 64.37% 
differentiate and syn. 71.97% 73.85% 67.45% 70.55% 

In order to obtain the same effect with continuous HMM, it 
is necessary to initialize them carefully. In fact, to obtain 
results similar to those of Table II and III, we have initiated 
the continuous HMM with the discrete HMM. 

 
���&21&/86,21 

For high discriminative HMM based recognizer applied to 
2D shape recognition problem, the vectors of the sequence 
of vectors that describe the 2D shape should be chosen 
such that the infrequent vector or their occurring instant 
can be distinguished. Looking for 2D shape descriptors that 
match above condition, and ways to improve the 
synchronism between the input sequence of vectors and the 
HMM are new research line proposed by this paper. 
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