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ABSTRACT
When transmitting speech in mobile communication sys-
tems, speech is compressed using a speech codec. To im-
prove the speech quality, disturbing background noise and
acoustic echo are attenuated. A new approach consists in
embedding these methods into the speech codec. The source-
coding performed by the encoder removes redundancy of the
speech signal and thus the bitrate is decreased. Accordingly,
the advantage of embedding the noise and echo reduction
into the speech codec and performing them on the param-
eters decrease the complexity and permits to integrate them
in network without delay or tandeming problems. In this pa-
per we investigate a gain loss control method in the speech
parameter domain.

1. INTRODUCTION

In mobile phone, two types of disturbing signals are added to
the useful speech signal: environmental noise and acoustic
echo due to the coupling between loudspeaker and micro-
phone. Without processing speech coder performance is de-
creased, CELP (Code-Excited Linear Predictive) coders be-
ing optimized to compress clean speech signal of a single
talker. To improve speech quality, reduction of disturbing
signal is mandatory. Speech enhancement techniques (i.e.
noise reduction and echo cancellation) can either be done as
pre-processing before speech encoding in terminals or in the
network by decoding the bit-stream, performing noise and
echo cancellation in the time and/or frequency domain and
re-encoding.

A completely different approach consists in embedding
these methods into the speech codec. Embedded noise and
echo reduction, performed on the speech codec parameters,
are principally low complexity compared to pre-processing
implementation. Moreover, any integration in the network
does not require the decoding and re-encoding of the sig-
nal, but just the modification of a few bitstream parameters.
Hence, tandeming problems are avoided.

In [1] an experiment was conducted showing that the
fixed gain of the speech codec is a relevant parameter to
decrease the background noise. Furthermore classical tech-
niques of noise reduction were successfully transposed from
the time and/or frequency domain to the ”(speech) codec pa-
rameter domain”. Additional work was spent to expand and
improve these methods [2].

In this paper we extend the principle to the echo cancel-
lation and investigate echo attenuation techniques via gain
loss control on the speech codec parameters. After introduc-
ing the echo problematic in section 2, section 3 describes the
functionality of the gain loss control in the time domain. We
transpose this method to the speech codec parameter domain

as explained in section 4. Finally a test setup to simulate
the gain loss control and the test results are presented in sec-
tion 5.

2. ACOUSTIC ECHO

Echo is due to the acoustic and mechanic coupling between
the transducers of a mobile phone. It creates feedback of the
far-end speech through the whole communication path. Due
to delay introduced in mobile network, the far-end user had
the annoying effect to hear his own voice with some delay.
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Figure 1: Modelization of acoustic and mechanic echo

Fig. 1 schematized the acoustic coupling model. The
loudspeaker signal x(t) is coupled to the microphone through
the acoustic path h(t) and the resulting echo e(t) is consid-
ered to be the result of the convolution of x(t) and h(t):

e(t) = x(t)∗h(t) (1)

In this paper we made the assumption to neglect the
noise. Accordingly, the microphone signal y(t) is the ad-
dition of the useful signal s(t) and of the echo signal e(t).
Taking into account the discretized signals x(n) and y(n),
we assume also that the discretized echo can be written as
e(n) = x(n)∗h(n), with h(n) being the discretized echo path
of h(t).

3. GAIN LOSS CONTROL IN TIME DOMAIN

Gain loss control is one of the oldest attempts to compensate
echo and is still commonly used to cope with light echo or in
combination with echo cancellation methods [3]. Its princi-
ple is to apply an attenuation gain to the microphone (resp.
loudspeaker) when the energy of x(t) (resp. y(t)) is bigger
than a certain threshold. Only a strongly reduced echo sig-
nal is transmitted to the far-end speaker as the loudspeaker
and/or the microphone path are attenuated. The disadvantage
of the gain loss control however is its behavior in double-talk
periods as it can attenuate both path (half-duplex, in other
term walkie-talkie effect).
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Usually for methods working in time-domain, the micro-
phone signal is decreased by an attenuation factor, which is
generally a function of the short-term energy of the input sig-
nal x(n) and y(n). One possible implementation is to con-
sider the energy difference between the microphone and the
loudspeaker signal, Edi f f (n). Accordingly, a hard decision
gain loss control computes the attenuation factor to be ap-
plied to the loudspeaker path, al(n):

al(n) =

{ 0 , Edi f f (n) < 0
0.5 , Edi f f (n) = 0

1 , Edi f f (n) > 0
, (2)

The attenuation on the microphone path is then computed
according to:

am(n) = 1−al(n) (3)

Such decision rule switches off the microphone path and
lets the loudspeaker path unchanged if the energy of the mi-
crophone is smaller than the energy of the loudspeaker (and
vice versa). Schematically, it lets signal with high energy
unchanged and cuts low energy ones.

Another possibility is a soft gain-loss control such as:

al(n) =







0 , Edi f f (n) <−
p
2

1
p Edi f f (n)+0.5 , −

p
2 ≤ Edi f f (n)≤ p

2
1 ,

p
2 < Edi f f (n)

(4)

As previously the microphone attenuation is obtained
through Eq. (3). Such soft decision avoids principally the
step introduced at the border Edi f f (n) = 0 in Eq. (2). The
transition is smoothed which gives in the interval Edi f f ∈

[− p
2 ,−

p
2 ] complementary gain attenuation on both path. It

enhances principally the behavior of the gain loss control
during double-talk periods.

4. GAIN LOSS CONTROL IN THE SPEECH CODEC
PARAMETER DOMAIN

To study the transposition of the gain loss control in the pa-
rameter domain, we use the Adaptive Multi Rate (AMR)
codec [4]. This codec is perfomred on frame of 20 ms divided
into 4 subframes of equal length. The codec uses a 10th order
linear prediction filter. The Linear Prediction Coefficients
(LPC) are computed each frame and are further quantized as
Line Spectral Pair (LSP). After filtering of the input signal
by the LPC filter, a residual signal is obtained. This signal
needs to be transmitted for reconstruction of the speech to
the decoder. To do so, first an adaptive codebook search is
performed on subframe basis leading to a pitch delay and
an adaptive gain value. By subtracting the excitation of the
adaptive codebook multiplied with its respective gain a new
target signal is obtained. This target signal is used to find
the optimal fixed codebook index and fixed gain value. All
parameters (LSP, pitch delay, fixed codebook index and both
fixed and adaptive gains) are transmitted to the decoder.

The first task when transposing the gain loss control
methodology in the parameter domain is to find out which
codec parameters are relevant. The z-domain synthesis filter

transfer function can be approximatively written as in [2]:

H(z) =
g f (m)

(

1−ga(m) · z−T (m)
)

(

1+
M

∑
i=1

ci(m) · z−i

) (5)

with M being the length of the linear prediction filter (10 in
AMR), m the subframe index, ci the LPC coefficients, ga the
adaptive gain, T the current pitch delay and g f the fixed gain
value. With this formula, the fixed gain can be seen as a
multiplicative factor applied to the signal. Accordingly, re-
ducing g f reduces the signal amplitude. Such a remark can
be made for the microphone and the loudspeaker paths. As
a result, applying gain loss control in the parameter domain
can be principally done by modifying the fixed gains. Then
our solution applies a weighting factor on the fixed gain. As
schematized in Fig. 2, the attenuation factors are computed
through a control unit. This control unit extracts some pa-
rameters from the bitstreams x(k) and y(k) (cf. section 4.2)
to compute the energy estimations and to apply regulation
rules on al and am similarly to the ones previously described
in section 3.
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Figure 2: Gain loss control in codec parameter domain

4.1 Energy estimation
The speech signal energy estimation is done on sub-frame
basis. As these estimations are done in the same way on the
incoming bitstream and on the outgoing bitstream, the gain
indices l and m are omitted in this section. To compute the
energy estimate Ê, we consider the fixed codebook and we
use the energy of the fixed codeword with constant energy
E f multiplied with the corresponding gain g f . Moreover, we
include in our computation the adaptive gain ga as a weight-
ing factor of the estimation of the energy made on previous
subframe. It leads us to the following formula:

Ê(m) = E f (m)g f (m)+ Ê(m−1)ga(m) . (6)

The use of the adaptive gain and of the previous estimated
subframe energy has a smoothing effect on our estimation.
The performance of our estimation is enlightened by Fig. 3.
For the signal given in Fig. 3a), the subframe energy is com-
pared to our estimation from Eq. (6). One can see that our
estimation is a good approximation of the reference energy.
This shows that using the bitstream itself, in other term with-
out decoding, it is possible to get an appropriate estimation
of the energy of the signal. This approximation is used in the
following to determine our gain loss control rule.
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Figure 3: Subframe speech signal energy estimation

4.2 Specification of the attenuation factors
The energy estimation described in Eq. (6) is smoothed to
eliminate fast modifications of the estimation between suc-
cessive subframes. This filtering presents the advantage that
small speech pauses are neglected by determining the attenu-
ation factors. The following non-linear filter is thus applied:

Ẽ(m)=

{

(1−αr) Ê(m)+αr Ẽ(m−1) if Ê(m) > Ẽ(m−1)
(1−α f ) Ê(m)+α f Ẽ(m−1) else

(7)
with αr < α f . Hence an increase on the speech energy is em-
phasized (fast reactivity) and reversely the filter reacts slower
when the speech energy decreases. Using this strategy short
speech pauses, for example pauses in a sentence, are ne-
glected. The filtering is done on the estimated loudspeaker
energy Êl(m) and on the microphone energy Êm(m).

These estimations are used to determine the attenuation
factors applied on the fixed gains. The factors are in the inter-
val [0 1], so that the fixed gain is either completely attenuated
or not at all. In this paper we investigate the use of the soft
decision, similar to the one described in Eq. (4) but applied
on subframe basis and estimated energy differences:

al(m) =







0 , Ẽdi f f (m) <−
p
2

1
p Ẽdi f f (m)+0.5 , −

p
2 ≤ Ẽdi f f (m)≤ p

2
1 ,

p
2 < Ẽdi f f (m)

(8)
where Ẽdi f f (m) stands for the logarithmic ratio between the
estimationes of the loudspeaker energy Ẽl(m) and of the mi-
crophone energy Ẽm(m):

Ẽdi f f (m) = 10log
Ẽl(m)

Ẽm(m)
. (9)

time / s

microphone input speaker A

a)
0 1 2 3 4 5 6 7 8

−0.5

−0.25

0

0.25

0.5

time / s

microphone input speaker B (+ echo of speaker A)

b)
0 1 2 3 4 5 6 7 8

−0.5

−0.25

0

0.25

0.5

Figure 4: Gain loss control simulation: microphone input

Finally, the gain factor is applied to the fixed gain in the
bitstream x(k):

g f ,x(m) = al(m) ·g f ,x(m) . (10)

The weighting factor am(m) is computed similarly to Eq.
3 and is applied to the fixed gain g f ,y(m) of the bitstream
y(m).

5. SIMULATION

Our simulation was performed using different combinations
of speech files. We based the comments of this section on
the analysis of one typical example, which includes single-
talk mode as well as double-talk periods (Fig. 4 - 6).

In Fig. 4 the speech of the far-end speaker (in blue),
and the microphone input at the near-end speakers side are
shown. The input signal is the sum of the near-end speech
(in red) and the echo (in dark red). The VAD of the AMR en-
coder [4] is used to distinguish between the different speech
modes. A colored background in light blue symbolizes
single-talk of the far-end speaker, whereas the single-talk
mode of the near-end speaker is characterized by a light red
background. During double-talk periods the background of
the plots are colored purple.

The behavior of the control unit is presented in Fig. 5.
Subplot a) shows the low-pass filtered energy estimation, Eq.
(6) and (7), with αr = 0.7 and α f = 0.95. In single-talk of the
far-end speaker (light-blue background) one sees clearly that
the estimated energy of the far-end speech is very similar to
the estimated energy of the echo. The attenuation and delay
of the echo results from the acoustic impulse response h(n).

Subplot b) of this figure shows the attenuation factors ap-
plied to the gains of the far-end and near-end speaker, respec-
tively. In single-talk mode, the criterion we used for echo
attenuation is accurate. The decreasing factors are adjusted
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Figure 5: Gain loss control simulation: control unit

correctly, i.e. the loudspeaker output is switched off com-
pletely when the near-end speaker is talking, conversely the
microphone input is interrupted when the far-end speaker is
talking.

Fig. 5 shows also the limits of the gain loss control dur-
ing double talk period. Rapid changes of the attenuation
factors occur in double-talk. Thus the microphone and the
loudspeaker at the near-end speaker side are switched off fre-
quently. The effect of the low-pass filtering on the estimated
energy in Eq. (7) can also be seen. Indeed the attenuation
factors are not changed before 200 ms after the end of the
voice activity detection. Accordingly signals at the end of a
word or a sentence would not be decreased which could lead
to residual echo situation.

Fig. 6 shows the processed speech files. We can see that
the speech is not modified during single talk and that the
echo is completely canceled. It is also shown that a residual
echo, colored dark red, is present during double-talk mode.
During double talk, as the attenuation factors can vary from
subframe to subframe it impacts the quality of the decoded
voice which is varying in energy. Different informal listen-
ing tests confirmed the results stated above. During single-
talk periods, the echo is completely suppressed. However in
double-talk mode the speech files are both modified in such
a way that it is not so comfortable to listen to. Our solution is
a kind of compromise between full-duplex and half-duplex.
During double talk, signals are not switched off but we ob-
tain a certain distortion in the microphone signal. This draw-
back is nevertheless inherent on gain-loss control, the same
bahaviour can be shown for gain-loss control in the time do-
main. It is then quite natural to obtain the same artefacts
through the transposition of the method in the parameter do-
main.
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Figure 6: Gain loss control simulation: loudspeaker output

6. CONCLUSION

In this paper it was shown that gain loss control method can
be transposed from the time domain to the parameter domain.
The simulations confirmed the validity of this transposition
and showed really good results in single-talk. This method
presents the same compromise between full-duplex and dis-
tortion on speech during double-talk period as when applying
gain-loss control in the time domain. Further experiments in
a real time system and in noisy conditions would give good
indications about the robustness of this methodology. We
still hope to be able to enhance the double-talk behavior. Us-
ing this low complexity mechanism allows to save computa-
tional effort. With our method, the energy and the attenuation
factors have to be determined only every 40 speech samples.
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