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ABSTRACT

This paper presents a novel blind multiple access interference
(MAI) suppression filter in DS/CDMA systems. The filter is adap-
tively updated by parallelly projecting them onto a series of convex
sets. These sets are defined based on the received signal as well
as a priori knowledge about the desired user’s signature. In order
to achieve fast convergence and good performance at steady state,
the adaptive projected subgradient method (Yamada et al.,2003) is
applied. The proposed scheme also jointly estimates the desired
signal amplitude and the filter coefficients based on a stochastic ap-
proximation of an EM type algorithm, following the original idea
proposed by Park and Doherty, 1997. Simulation results highlight
the fast convergence behavior and good performance at steady state
of the proposed scheme.

1. INTRODUCTION

In DS/CDMA system, multiple users can transmit their signals
through the same channel at the same time. Each user has its own
signature and the receiver recovers the information by correlating
the input signal with the known user’s signature. At the receiver,
the input signal is not only corrupted by noise, but also by Multiple-
Access Interference (MAI) caused by the correlation among the
users’ signatures. Even if the cross-correlation among the users’
signatures is kept low, a conventional matched filter cannot recover
satisfactorily the desired information if the signal power from the
desired user is much weaker than the interfering users. Such prob-
lem is known as near-far problem and power control can be applied
in order to overcome this undesired effect [1, 2]. The main goal of
power control is to keep the same power level of all users seen by
the receiver, but its disadvantage is that the overall multiple-access
and antijamming properties of the system is decreased [3]. Be-
sides, in wireless environments the power levels often vary drasti-
cally. Whether power control is being used or not, another way of
tackling the near-far problem is to use near-far resistant filters.

Several near-far resistant adaptive schemes have been reported
[4–7]. The receiver can first use a training sequence and then switch
to a decision direct mode in order to minimize a minimum-mean-
square error [7]. But, in high throughput systems, blind schemes
are more desirable.

Blind schemes are needed when a training sequence in a prede-
fined time slot is not available or not desirable. As in blind schemes
the additional overhead imposed by training sequences is absent, the
throughput of the overall system is increased. The main burden with
conventional blind schemes in comparison to non-blind schemes is
that their convergence is normally poor and not comparable with
those of non-blind schemes [6].

A simple set-theoretic blind scheme was presented in [4] and
shows better performance at steady state than the blind scheme in
[6]. Unfortunately, its speed of convergence is still poor compared
with the one proposed in [6]. In relatively fast time-varying con-
ditions, i.e., when the users’ power changes drastically as in wire-
less communications, fast algorithms are necessary, otherwise the
receiver will not be able to achieve good performance.
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Figure 1: DS/CDMA system model

Recently a novel set-theoretic adaptive filtering method named
Adaptive Projected Subgradient Method was developed [8–10]. The
method offers an unified view for broad range of set-theoretic adap-
tive signal processing and can realize fast, efficient and robust filter-
ing. For simplicity, in this paper we study a MAI reduction problem
in nondispersive channels [4–7, 11] and propose a novel blind MAI
suppression filter by combining some ideas in [4] and [8–10]. The
filter is adaptively updated by parallelly projecting them onto a se-
ries of convex sets based on desired signal properties and another
convex set based on the user’s signature. Information about the sig-
nal amplitude is necessary, so the algorithm jointly estimates the
desired signal amplitude and the filter coefficients.

The numerical examples show that the proposed algorithm
achieves fast convergence, while attaining good performance at
steady state. Results are even comparable to some non-blind
schemes.

2. PRELIMINARIES

A. System Model

This section briefly introduces a continuous-time DS/CDMA sys-
tem and its equivalent discrete-time representation. Figure 1 de-
scribes the considered receiver. It is an asynchronous binary phase-
shift keying (BPSK) short-code DS/CDMA system.

Let us define:

sk(t) =
N−1

∑
n=0

ck[n]ϕTc
(t−nTc),

where sk(t) is the kth user’s signature waveform in time domain,
ck[n] ∈ {−1,+1} is the nth spreading code chip of the kth user,
ϕTc(t) is the chip waveform with unity energy defined on [0,Tc],
Tc is the chip period, and N = Tb

Tc is the processing gain, given that
Tb is the bit period.

We also define:

bk(t) =
+∞

∑
i=−∞

bk,iϕTb
(t− iTb),
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where bk(t) is the information-bearing baseband signal, bk,i ∈
{−1,1} is the ith data bit of the kth user, ϕTb

(t) is the data pulse
shape with unity energy.

Throughout this paper, the first user (k = 1) is the desired one.
Each user modulates the baseband signal, hence producing at the
input of the receiver, under the assumption that transmission is dis-
tortionless

r(t) =
K

∑
k=1

αk

√
2Pkbk(t− τk)sk(t− τk)cos(wct−θk)+n(t),

where n(t) is the noise, αk is the attenuation due to path losses of
the kth user, wc is the angular carrier frequency, θk is the phase of
user k, Pk is the transmitted power of the kth user and K is the
number of users at the same time [4].

The receiver synchronizes with the first user and recovers the
baseband signal again, with the help of a low pass filter (LPF). As
we are synchronized with user 1 (τ1 = 0 and θ1 = 0), the resulting
signal is given by:

rD(t) = A1b1(t)s1(t)+
K

∑
k=2

Akbk(t− τk)sk(t− τk)+nLP (t),

where

Ak = αk

√
2Pk cos(θk −wcτk),

where nLP is the filtered noise.
Then, this signal is chip-matched filtered [1] and sampled every

Tc seconds. Such operation can be described by an N -dimension
vector at the ith bit interval:

ri = A1b1,is1 +
M

∑
m=2

Amb̄m,is̄m +ni, (1)

where ni is the sampled noise, s1 = [c1[0] c1[1] · · ·c1[N − 1]]T
is the signature vector given by the desired user’s chips, s̄m and
b̄m,i are the interference vectors and interfering symbols generated
by interfering users’ parameters such as associated data symbols
and spreading vectors. M − 1, the number of interference vectors,
can range from K − 1 to 2(K − 1), due to relative delays of the
K −1 interfering users [5]. The summation in Eq. (1) is the result
of the MAI. An adaptive filter is used to suppress this undesirable
interference.

The adaptive filter h is also a N-dimensional vector. The deci-
sion on the received bit is made from b̂1,i = sign[hT ri], i.e., it is
obtained from the inner product between the filter vector h and the
received signal vector ri.

B. Adaptive Projected Subgradient Method

A function Θ : R
N → R is said to be convex if ∀x,y ∈ R

N and
∀ν ∈ (0,1), Θ(νx+(1−ν)y)≤ νΘ(x)+(1−ν)Θ(y). Let Θ be a
continuous convex function. The subdifferential of Θ at y is the set
of all the subgradients of Θ at y:

∂Θ(y) := {a ∈ R
N |Θ(y)+ 〈x−y,a〉 ≤ Θ(x),∀x ∈ R

N}

A set C ⊂ R
N is convex provided that ∀x,y ∈ C, ∀ν ∈ (0,1),

νx+(1−ν)y ∈ C. For any nonempty closed convex set C ⊂ R
N ,

the projection operator PC : R
N → C maps x ∈ R

N to the unique
vector PC(x) ∈ C such that d(x,C) := miny∈C‖x−y‖ = ‖x−
PC(x)‖.

With the above definitions, the goal of the Adaptive Projected
Subgradient Method is to asymptotically minimize a certain se-
quence of non-negative convex functions over a closed convex set.

Algorithm 1 (Adaptive Projected Subgradient
Method [9, 10]) Let Θn : R

N → [0,∞) (∀n ∈ N) be a se-
quence of continuous convex functions and K ⊂ R

N a nonempty

closed convex set. For an arbitrarily given h0 ∈ K, the adaptive
projected subgradient method produces a sequence (hn)n∈N

by

hn+1 :=




PK

(
hn −µn

Θn(hn)
‖Θ′

n(hn)‖2 Θ′
n(hn)

)
,

if Θ′
n(hn) 
= 0

hn otherwise

(2)

where Θ′
n(hn) ∈ ∂Θ(hn), 0 ≤ µn ≤ 2.

Proposition 1 (Adaptive Projected Subgradient Method [10]) The
sequence (hn)n∈N

generated by (2) satisfies the following:
(a) (Monotone approximation) Suppose that

hn /∈ Ωn := {h ∈ K|Θn(h) = Θ∗
n} 
= /0,

where Θ∗
n := infu∈K Θn(u). Then, by using ∀µn ∈(

0,2
(

1− Θ∗
n

Θn(hn)

))
, we have

∀h∗(n) ∈ Ωn,‖hn+1 −h∗(n)‖ < ‖hn −h∗(n)‖.
(b) (Boundedness, Asymptotic optimality) Suppose

∃N0 ∈ N s.t.

{
Θ∗

n = 0, ∀n ≥ N0 and
Ω :=

⋂
n≥N0

Ωn 
= /0.

Then (hn)n∈N
by (2) is bounded. Moreover if we specially

use ∀µn ∈ [ε1,2 − ε2] ⊂ (0,2), where ε1, ε2 > 0, we have
lim

n→∞
Θn(hn) = 0 provided that (Θ′

n(hn))n∈N
is bounded.

For other properties, e.g., the strong convergence of the method, see
[10].

3. PROPOSED ADAPTIVE RECEIVER

In this section, we propose a blind adaptive receiver, which does
not require any training sequence and only assume the knowledge
on τ1, θ1 and s1.

3.1 Filter Constraint Sets

Let’s define useful closed convex sets corresponding respectively to
the desired properties for the MAI suppression filter h ∈ R

N .
Suppose, as the first step, that the information about A1 is

known. The problem about how to obtain this information will be
addressed shortly. Taking into account the received signal in (1),
the desired MAI suppression filter h should belong to [4]:

C̄A(i) := {h : E[|hT ri|] = A1}.
Unfortunately, a stochastic approximation CA(i) := {h :

|hT ri| = A1} is not a convex set, and thus the convex set theo-
retic schemes cannot be applied. We employ as its simple convex
relaxation:

CB(i) := {h : |hT ri| ≤ A1}. (3)

CB(i) is now a closed convex set and its projection is given by:

P
CB(i)(h) =




h− (hT ri −A1)
ri

rT
i ri

, if hT ri > +A1

h− (hT ri +A1)
ri

rT
i ri

, if hT ri < −A1

h, otherwise.
(4)

To avoid the null vector h = 0 as the adaptive filter, which elim-
inates not only the interference, but also the desired signal, we de-
fine one set that contains the signature s1:

Cs := {h : hT s1 = 1}, (5)

onto which the projection is given by

PCs
(h) = h− (sT

1 h−1)s1. (6)

It is easy to see that an ideal filter also belongs to set Cs.
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3.2 Proposed Scheme

Suppose that at time n we have an estimated filter hn for MAI sup-
pression. To update the filter from hn to hn+1 we may consider
the following cost functions as the performance measure to be de-
creased:

Θn(h) :=




∑q−1
j=0

ω(n)
j

Ln
‖hn −P

CB(n−j)(hn)‖·
·‖h−P

CB(n−j)(h)‖, if Ln 
= 0
0, otherwise,

(7)

∀n ∈ N, q ∈ N
∗ where ∑q−1

j=0
ω(n)

j
= 1, {w(n)

j
}j=0,··· ,q−1 ⊂ (0,1]

and Ln := ∑q−1
j=0

ω(n)
j

‖hn −P
CB(n−j)(hn)‖. Note that Θn (n =

0,1,2, . . .) is a sequence of continuous convex functions that uses
not only the actual received signal vector, but also past ones. By
decreasing it, we can find a filter closer to the intersection of the
sets CB(n− j), j = 0, · · · ,q−1, which reduces MAI when the fil-
ter also lies in Cs. Thus we have to minimize asymptotically a
sequence of non-negative cost functions Θn (n = 0,1,2, . . .), which
reflects the sets CB(i), over the closed convex set Cs. As shown in
Proposition 1, the Adaptive Projected Subgradient Method [9, 10]
asymptotically minimizes such sequence.

For the function Θn in (7), we have its subgradient

Θ
′
n(hn) =




∑q−1
j=0

ω(n)
j

Ln

(
hn −P

CB(n−j)(hn)
)
∈ ∂Θn(hn),

if Ln 
= 0
0 ∈ ∂Θ(hn), otherwise.

(8)

Applying Eqs. (7) and (8) to the scheme in (2) yields the fol-
lowing algorithm for K := Cs:

Algorithm 2 Given q ∈ N
∗, let’s use the sets C

B(n), · · · ,
C

B(n−q+1) and Cs at time n. The value q corresponds to the num-
ber of parallel processors to be engaged at time n. In addition, let
ω(n)

j
> 0, j = 0, · · · ,q−1, satisfy ∑q−1

j=0
ω(n)

j
= 1. For any ho ∈R

N ,

define a sequence (hn)n∈N
by

hn+1 = PCs

(
hn +λn

(
q−1

∑
j=0

ω(n)
j

P
CB(n−j)(hn)−hn

))
, (9)

P
CB(i) and PCs

are the projections defined in Eq. (4) and (6),

respectively. λn ∈ [0,2Mn] is a relaxation parameter, where

Mn =




∑q−1
j=0 ω(n)

j
‖PCB (n−j)(hn)−hn‖2

‖∑q−1
j=0 ω(n)

j
PCB (n−j)(hn)−hn‖2 ,

if hn /∈⋂q−1
j=0 CB(n− j)

1, otherwise.

(10)

For convergence of the scheme in Eq. (9), see Proposition 1 (for
more detailed discussion see [9, 10]). Also by Eq. (9), hn ∈ Cs is
always granted. The scheme in [8] does not use PCs

.
As in [4], we have the following simple recursive estimator for

the amplitude.

A1,n+1 =

{
A1,n −γ(A1,n −hT

n rn), if hT
n rn ≥ 0

A1,n −γ(A1,n +hT
n rn), otherwise,

(11)

where A1,0 = 0 and 0 ≤ γ < 1 is a forgetting factor. Ak,n is the
amplitude estimate of user k at nth iteration.

The resulting algorithm first updates A1,n by Eq. (11) and, with
this new estimation, it updates hn by Eq. (9).

4. SIMULATION RESULTS AND CONCLUDING
REMARKS

Figures 2 and 3 compare the speed of the proposed algorithm
in a near-far situation and asynchronous communication with the

Table 1: Adaptive Algorithms
Algorithm Adaptation rule

NLMS hn+1 = hn −µ(hT
n rn −b1,n) rn

rT
n rn

Assumption: b1,n is known (training sequence)

GPA hn,1 =

{
hn −µ(hT

n rn −A1)
rn

rT
n rn

, if hT
n rn > 0

hn −µ(hT
n rn +A1)

rn
rT

n rn
, otherwise

hn+1 = hn,1 − (sT
1 hn,1 −1)s1

Assumption: A1 and s1 are known
SAGP A1,n+1 = A1,n +γ(|hT

n rn|−A1,n)

hn,1 =

{
hn −µ(hT

n rn −A1,n+1)
rn

rT
n rn

, if hT
n rn > 0

hn −µ(hT
n rn +A1,n+1)

rn
rT

n rn
, otherwise

hn+1 = hn,1 − (sT
1 hn,1 −1)s1

Assumption: s1 is known

OPM-GP xn+1 = xn −µ[rn − (sT
1 rn)s1]

hT
n rn

rT
n rn

hn+1 = s1 +xn+1
Assumption: s1 is known

Proposed A1,n+1 =

{
A1,n −γ(A1,n −hT

n rn), if hT
n rn ≥ 0

A1,n −γ(A1,n +hT
n rn), otherwise

hn+1 = PCs

(
hn +λn

(
∑q−1

j=0 ω(n)
j

PCB (n−j)(hn)−hn

))
Assumption: s1 is known
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normalized LMS (with training sequence), the OPM-based gradi-
ent projection (OPM-GP) [6], the generalized projection algorithm
(GPA) [4] and the space alternating generalized projection with
approximate EM mapping (SAGP) [4]. Table 1 summarizes the
algorithms. The noise is assumed to be Gaussian. The perfor-
mance characteristic is shown by the ensemble-averaged output-to-
interference ratio (SIR), which at the nth iteration is calculated by:

SIRn =
∑U

k=1(hn[k]T s1)
2

∑U
k=1

[
hn[k]T (rn[k]−A1[k]b1,n[k]s1)

A1[k]

]2 ,

where hn[k] and rn[k] are the respective vectors on kth realiza-
tion. A1[k] and b1,n[k] are the transmitted bits and amplitude of the
desired user at kth realization. U is the number of realizations.

Figure 2 compares the performance of the proposed algorithm
with schemes that rely on training sequences or knowledge of the
amplitude A1. Figure 3 is a fair comparation with other schemes
that have the same information as the proposed one. We set the
number of realizations U = 500. ri = r1 for i ≤ 1. The num-
ber of past vectors processed q is 64. µ = 0.6, λn = 0.2Mn,
γ = 0.01 and ω(n)

j
= 1

q , j = 0, · · · ,q. The number of interfer-

ing users is (K − 1) = 5 and all users have amplitude 10 times
greater than the amplitude of the desired signal A1 = 1. The
signal-to-noise ratio (SNR) is 15 dB. Signals are modulated by 31-
length gold sequences, which were chosen randomly. For simula-
tion simplicity, the path delays of users k = 2, · · · ,6 are given by
τk = lkTc, where lk is a uniformly random integer which satisfies
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0 ≤ lkTc < Tb. [11] considers only a synchronous DS-CDMA sys-
tem (lkTc = 0, k = 2,3, . . .) and that is the reason it is not com-
pared. For all algorithms, h0 = s1 and, for OPM-GP, x0 = 0. By
fixing all parameters and varying µ, the value µ = 0.6 resulted in the
fastest noticeable speed of convergence for GPA and SAGP. As for
the SAGP, the parameter γ did not influence the results in a notice-
able way in the sense of speed increases. Also, by varying the step
size of the NLMS, it was not possible to achieve faster convergence
than the proposed one and the same happened with the OPM-GP.

We observe that the speed of the proposed algorithm is unbeat-
able by the compared methods. Further performance increases can
be achieved through proper selection of q, λn, ω(n)

j
and γ. This fast

numerical convergence is due to the fact that we use more informa-
tion in parallel at the same time. Not only is the actual input sample
vector used, but also past ones are used.

Regarding the parameter q, the higher it is, the more informa-
tion we use at the same time. Therefore speed increases are ex-
pected if other parameters are kept the same. However, the perfor-
mance at steady state is not necessarily the same. This is illustrated
in Fig. 4.

Practically it may not be possible to have a large value for q
and, for smaller values of µ, GPA and SAGP may perform better
at steady stead if the right set of parameters is not properly chosen.
However, speed improvements can be achieve even for small q, as
illustrated in Fig. 5. Regarding the performance at steady , one pos-
sible solution is to ignore past data when steady steady is achieved,
i.e, q is set to 1. With such procedure the proposed method presents
both desirable features: fast speed and good performance at steady
state.

Suitable choice of the weighting coefficients ω(n)
j

can provide

even better results than demonstrated in the above examples, giving
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Figure 5: Speed improvement for small q over the fastest achievable
speed with GPA and SAGP. SNR=15 dB, K = 6, γ = 0.01, µ = 0.6,
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even more flexibility to our method. The results show that the pro-
posed scheme offers a reasonable alternative specially when speed
of convergence is concerned and MAI is high. Finally, the addi-
tional computational complexity can be somehow alleviated by us-
ing processors in parallel, due to the inherently parallel construction
of the summation in Eq. (9).
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