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ABSTRACT

The past decade has shown distinct advances in the theory of MIMO
techniques for wireless communication systems. Now, the time has
come to demonstrate this progress in terms of applications, where
the intermediate step towards a customized product consists in more
or less rapid ”prototyping”. Due to the multitude of different algo-
rithmic approaches, i.e. beamforming, space-time coding, spatial
multiplexing, and of different standards, i.e. UMTS, WLAN’s, an
ideal prototyping platform requires a high degree of flexibility and
modularity in order to be qualified for a wide range of potential ap-
plications. The aim of this contribution is to give an overview about
the challenges, the rich variety and the usefulness of such MIMO
hardware platforms.

1. INTRODUCTION

Without any doubt MIMO techniques count to the few emerging key
technologies for wireless communications. The number of yearly
publications in this area is tremendous and meanwhile it is almost
impossible to keep an overview about the numerous proposed al-
gorithms. Moreover, the number of research teams worldwide is
astonishingly high. For example, only in Europe more than 100 sci-
entific and industrial organisations are performing serious research
in multiple antenna techniques. Interestingly, although multiple
antenna techniques are so auspicious, no relevant breakthrough in
terms of highly successful MIMO products has been observed yet.
Intuitive simple reasons are high MIMO complexity as well as crit-
ical cost issues when trying to push the promising MIMO theory
towards practice. Taking both reasons into account requires that al-
gorithm testing has to be performed on a very flexible and modular
MIMO hardware platform where significant insights with respect
to cost issues can be obtained in parallel. This goal can be briefly
denoted by rapid MIMO prototyping and it is the aim of this contri-
bution to shed some light on this topic and related challenges.

In Section 2 general considerations about MIMO platforms will
be given in a consecutive way. Section 3 highlights a universal rapid
prototyping methodology, needed to achieve quick and meaningful
results and required to avoid common pitfalls. The final section
covers a typical design example and discusses the essential hard-
ware components from a more fundamental point of view.

2. GENERAL CONSIDERATIONS ABOUT MIMO
PLATFORMS

MIMO platforms for current and future wireless communications
can characterized by a large number of different properties like
� environment (indoor/outdoor)
� wireless standard
� carrier frequency
� bandwidth
� sampling frequency
� measurement device, demonstrator, prototype
� real-time, off-line
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� number of antennas
� with or without feedback
� single or multiple users
� type of modulation
� basic algorithms
� achievable data rate.

It is obvious that with a single platform, even in case of highest
flexibility and modularity, not all of the listed items can be served
satisfactory. Hence, in order to figure out the relevant properties of
such flexible, scalable and modular platform, some a-priori thoughts
are given in the following.

An easy decision can be made regarding the wireless environ-
ment of the experiments: while indoor systems can be even for
a small organisation or a University tested in reality, significant
investigations in outdoor scenarios require a more expensive
mobile equipment. Based on this first distinction, the classes
of corresponding available wireless standards is approximately
halved. Although not obligatory that experimental research follows
wireless standards, we here have in mind only those investigations
with strong impact to real world applications, so that standards,
or at least regularisations become meaningful. In the following
we will primarily focus on indoor scenarios; initial indoor MIMO
experiments are reported in [1, 2] not utilizing any specific
modulation scheme (from BPSK to 64-QAM, all were used) or
access scheme. The experiments were based on a Pentek platform
with multi DSP C40 processor, and required to be programmed in
assembler. Supporting a transmission rate of less than a 1Mbps and
up to 16 antennas such effort and complexity was tremendous at
the time but it did not offer a concept for growing complexity. A
platform capable of outdoor transmission was reported in [3, 4, 5]
supporting a 4 �4 antenna system in UMTS standards allowing for
8Mbps downlink capacity.

Once the environment is fixed and the potential standards are
determined, the available range of carrier frequencies is pretty
limited which further facilitates the decision for the antennas and
analog front-ends of the targeted platform. In fact, because of
antenna spacing in the order less or equal than λc

�
2 � c0

�
fc,

a higher carrier frequency fc is principally favourable so as to
keep the size of the whole antenna array limited for applications.
In contrast, the higher the carrier frequency, the stronger the
attenuation by objects (e.g. walls). For example, a carrier fre-
quency of, say, 10 GHz is considered to be blocked by walls. So,
reasonable carrier frequencies are those given by the ISM band
2.4 GHz and 5.2-5.7 GHz, leading to array sizes up to a few tens
of centimetres. These frequencies correspond to the family of
wireless local area network standards IEEE 802.11 [6]. However,
some extended platform flexibility can be achieved by use of
analog standard connectors (e.g. SMA), so that different analog
front-ends can be easily connected with the baseband hardware.
This is possible by usage of standard 50 Ω terminated analog in-
puts and outputs for clocks, trigger signals, A/D and D/A interfaces.

An important question not only for baseband processing but
also for the design of the RF front-end is the required bandwidth.

681



The IEEE 802.11a standard requires a bandwidth up to the order
of 20 MHz per channel. Because of possible channel merging, an
even larger bandwidth may be required. Moreover, oversampling,
beneficial to synchronisation and equalization can increase the in-
ternal baseband-bandwidth substantially. Due to IQ imbalance, it is
advisable to operate analog-digital-converters at low-IF rather than
at baseband [5, 7]. State-of-the-art in sampling are a few hundred
Mega-samples, which indicates the limits and opportunities of such
platforms.

The last relevant decision concerns the kind of the platform,
i.e. either a measurement device, a demonstrator or even a pro-
totype [7]. While a measurement device and a demonstrator are
usually working off-line and are the right tools for pure algorithm
researchers, a prototype requires real-time operation. Based on our
philosophy to contribute to the progress of MIMO technologies to-
wards real world applications, a prototype supports real-time exper-
iments (model independent) and reduces the risk of the anticipated
future product, especially in case of new technologies like MIMO.
However, a prototype can also work in off-line mode [8], e.g. to
test software routines or to provide the algorithmic researcher with
helpful real world data. In that case, the prototype requires a huge
memory in the order of a few gigabytes, further increasing the plat-
form flexibility.

The remaining hardware related aspects are more or less
antenna-size and thus cost-related and less related to a basic
MIMO strategy. The number of antennas, except for measure-
ment systems (e.g. channel sounders), is typically limited -
starting at two transmit and one receive antenna-systems, very
typically are 4 �4, and going up to 16 �16 antenna systems (see
bwrc.eecs.berkeley.edu/Research/MCMA/home.htm). A general
decision has to be made between unidirectional or bidirectional
data traffic. The targeted platform (see also [9]) will support
both data directions, having in mind the additional benefit of a
”feedback channel” in order to provide the transmitter with full or
partial channel state information. Hence, the transmitter is able to
adapt to the given channel so that the class of testable algorithms
is extended further. While in the past such feedback and also
synchronization needs have been often realized by cable, a fully
implemented wireless back channel is a much more solid approach
also supporting outdoor experiments.

Of particular relevance for meaningful applications of MIMO
technology is the behaviour of algorithms in a multi-user scenario.
Even if this costs additional hardware for each added user, it is of
great importance because multi-antenna techniques enable space di-
vision multiple access, which is one of the most relevant MIMO
benefits [10].

Up to here all mentioned aspects are related to hardware issues
and therefore completely determine the technical specifications of
the targeted platform. In contrast, the software in terms of signal
processing algorithms represent the inner nucleus of MIMO tech-
nology. For that reason the platform should be able to handle all
relevant classes of algorithm, like spatial multiplexing, beamform-
ing and space-time coding and any combination among them. This
means sufficient signal processing power provided by DSPs and
FPGAs (see the sections further ahead for more details) and also
an adjustable antenna spacing in order to obtain correlated or un-
correlated or partial correlated data, as well as to deal with coupling
issues. In addition, the type of modulation (e.g. OFDM) and the
access scheme should be selectable as well.

The most relevant reasons for the use of MIMO techniques are
threefold:
� to increase the maximum data rate,
� to extend the coverage,
� and to serve a larger number of users.

Of course, all discussed items impact the success. For example,
the bandwidth together with the feedback limit the data rate, the
number of antennas the coverage as well as the maximum number

of potential users, etc. Hence, the targeted platform reflects the
challenges of MIMO technologies.

Before we proceed with the methodology of rapid prototyp-
ing, an overview about existing MIMO hardware platforms will be
given. The following interesting results were found by an internal
study at the University of Duisburg-Essen in close cooperation with
IMEC, Belgium.
� 60%, 19%, 8%, 13% of existing MIMO platforms are owned

by Universities, Research Centers, Large Companies, Small and
Medium Sized Companies, respectively.

� 60% (40%) of the platforms are designed for indoor (outdoor)
environments

� 30%, 23%, 19%, 15% are DSP, DSP& FPGA, FPGA, Chip-
based platforms, respectively.

� Most of the analog front-ends are build by discrete electronic
components.

� Most of the platforms are focussed on OFDM.
� Most of the platforms are designed for 2 �3 GHz carrier fre-

quency.
� Number of antennas typically vary between 2 and 4 (at both

sides).
� Universities tend to favour the measurement de-

vice/demonstrator approach.
� Universities tend to favour the off-line approach by use of a

large memory.
� Multi-user capable platforms are very seldom.
� Channel state information at the transmitter is very seldom.

Based on these observations, it becomes clear that the targeted hard-
ware platform is not often realized yet. Especially, the multi-user
scenario and the feedback channel are to the best knowledge of the
authors not simultaneously investigated yet.

3. RAPID PROTOTYPING METHODOLOGY

3.1 Commercially Available Tools

While many rapid prototyping platforms exist, most only support-
ing either DSPs (favoured are TI’s C6x) or FPGAs (favoured are
Xilinx Virtex-II), some supporting mixtures of DSPs and FPGAs,
a general method for mapping the signal processing algorithms
onto such platform is not available. Some platform providers offer
simple methods though supporting more general tools for specific
DSPs and FPGAs.

TI (http://www.ti.com) offers a rich design environment that
can be customized to specific DSP evaluation boards, including
also real-time operating systems. Due to the excellent C-compiler
and optimizer, signal processing procedures can be specified in
a high level language and mapped automatically onto a DSP.
Many prototyping platform providers take advantage of this envi-
ronment and customize their platforms accordingly. Mathworks
(http://www.mathworks.com) offers Simulink, a graphical interface
with a rich library of toolboxes, easing the design of communica-
tion algorithms and fixed-point design tools. Most interesting is
the real-time workshop supporting automatic mapping of Simulink
designs into C code for TIs C6x processors. However, so far the
efficiency of the coding is quite limited. Harsh conditions on
real-time as they are common in wireless designs are not supported.
Nevertheless, due to relative inexpensive evaluation-boards many
researchers were able to quickly adapt their efforts to such boards,
extending them with high speed ADC and DAC and supporting
software defined radio development [11]. Even a 2 �2 wireless
MIMO system has been reported on [12] allowing to test simple
Alamouti Space-Time Codes.

FPGA providers like XILINX (http://www.xilinx.com) and
Altera (http://www.altera.com) enrich Simulink designs by their
own libraries, called Xilinx System Generator and Altera’s DSP
Builder, respectively. They allow to simulate predefined DSP
functions under Simulink and map the designs direct unto the
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corresponding FPGA chips. These tools lead to quite efficient
FPGA designs, provided the DSP functions are available in the
libraries. Especially, data-flow oriented designs can be performed
quickly, utilizing such tools. In [13] a FPGA board (BEE) with
flexible communication links between the FPGAs is reported.

Nallatech (http://www.nallatech.com) supports XILINX FP-
GAs Spartan and Virtex-II based development boards together with
Simulink and Xilinx System Generator. The boards also carry fast
AD and DA converters. Similarly Aptix (http://www.aptix.com)
offers a scalable FPGA board (System Explorer) based on
Aptix’ Field Programmable InterConnect technology (FPIC)
together with some design tool chain. However Aptix focus
more on so-called Pre-Silicon Prototyping, thus closer to a final
product with less flexibility in the sense of a real-time demonstrator.

Lyrtech (http://www.lyrtech.com) offers multi-DSP system
boards containing one or two DSPs either TI C6713 or ADSP21160
and a Virtex-II FPGA from XILINX. With help of TI and Simulink
tools the chips, can be programmed supporting even hardware-in-
the-loop co-simulation.

Companies like Sundance (http://www.sundance.com),
Hunt Engineering (http://www.hunteng.co.uk), and Pentek
(http://www.pentek.com) offer the richest set of DSP and FPGA
modules supporting also fast DA and AD converters as well as even
IF conversion modules. Typically, a software library supports the
intercommunication between chips and boards.

3.2 Requirements

In wireless MIMO prototyping the requirements for system design
are of technical and of methodological nature and due to the large
complex designs quite challenging: a large complexity of signal
processing algorithms needs to be supported typically requiring
to partition algorithms over several DSPs and FPGAs. Such
partitioning is not supported by commercially available tools and
thus requires engineering intuition and a lot of hand-optimization.
It also requires the presence of interface drivers to support inter-
communication between DSPs, FPGAs and mixed DSP-FPGA
modes. In order to develop and test such high-complex systems
rapidly, hardware-in-the-loop co-simulation of parts of the design
is a very useful method. Also, observing internal data in DSPs and
FPGAs while the chips are running can be very useful in finding
bugs.

Next to technical requirements of the tools involved, there is
also requirements on the design flow methodology itself. Since
rapid prototyping in wireless MIMO is very challenging, a whole
design team is required to cover the design flow from system level
design, over partitioning to finally mapping the various signal pro-
cessing functions onto a HW platform. Such design team needs to
consist of diverse experts in DSP and FPGA programming and re-
quires a clear organization of the various tasks. In short, the design
effort is very similar to an industrial chip or system design just with
fewer people an some constraints less.

3.3 The Five-Ones Approach

In order to support the technical as well as the methodological re-
quirements of a design team, a design flow methodology called the
Five-Ones approach has been proposed [14]. The Five-Ones ap-
proach considers the following points as crucial for a successful
prototyping effort in a rapid manner:
1. one design environment
2. one automatic documentation by specification
3. one forward-backward compatible code revision tool
4. one code to be worked on by refinement steps
5. one team to improve communication.
1. In [14] it is shown that the design effort appears as a feed-

forward system, handling the design process from one part of

the design team to the next and a feedback loop concerning
communication about the common design goals and progress
achieved. Such feedback slows down the design process. Since
communication is required, the feedback loops cannot be bro-
ken. Also the required skill sets are not present in all parts of
the teams. However, the reaction time can be changed dramat-
ically, once all design teams share one design environment.
This observation on its own is not new and many tools in the
EDA community exist (Simulink, COSSAP/CoCentric System
Studio and SPW to name the most widespread). However, since
they have been developed to support specifically chip design
(and to some extent algorithmic design) the architectural level
and its exploration, as well as testing and system integration on
specific hardware platforms (so called platform based design)
are not supported. Also, due to specific language constraints
many researchers refuse to use such systems, since they be-
lieve their productivity is dramatically reduced by them. On top
of that, high license costs prevent many companies from using
them throughout the whole design chain.

2. A second aspect is the missing documentation of the research
part of the design team. While such people focus on mean-
ingful results of their simulations, the following design teams
are mostly interested in functional specifications. Graphical
systems like COSSAP/CoCentric System Studio, SPW and
Simulink offer the possibility to define functional blocks with
clearly defined input and output ports and corresponding data-
rates. Using such a graphical system induces a documentation
while specifying the functional blocks. Specification allows de-
tection of flaws at an early stage and, much more importantly,
it can be used to supply additional information into functional
descriptions of algorithms. The graphical description has fur-
ther advantages: it avoids global variables. Global variables can
lead to the undesired effect that information from the transmit-
ter and/or channel is known at the receiver and some (undesired)
cheating can be the result. It is, for example, quite common in
literature to present MMSE receivers having perfect knowledge
of the Signal-to-Noise Ratio (SNR), while this value in reality
needs to be estimated. The problem of estimating such a value is
typically underestimated. In addition to the graphical specifica-
tion, COSSAP for example, allows writing so-called Generic-C,
an ANSI C program enriched by essentially a header specifying
the names, types and rates of the input and output variables, a
feature well preserved in the so-called PRIM models of the new
version CoCentric System Studio.

3. A third aspect of the slowdown in the product flow is the
required permanent re-coding. Although the research part
of the design team defines a code for simulation, the system
design team is not able to reuse the code, mainly due to its
poor documentation and coding style used. Based on the
anticipated hardware platform, other languages (assembler,
VHDL) have to be used at a certain level of refinement,
requiring time-consuming hand re-coding. Such foregoing
is error prone and requires a solution based on automatic
re-coding tools. See for example [15] where it is claimed
that errors found late in the design process cost up to 100
times more than those found early. While graphical tools
do not provide an immediate solution to the tedious recod-
ing process, they can support it by allowing multiple, but
different descriptions for each block. This alleviates the
transformation and allows doing it piece by piece. Simulink,
COSSAP/CoCentric System Studio (http://www.synopsys.com)
and SPW (http://www.cadence.com) allow for such code ver-
sions, but only on a block level, i.e., if a modification impacts
several blocks at the same time, the system does not work out
the required consistency.

Revision control tools (such as CVS (Concurrent Ver-
sions System - http://www.cvshome.org) or ClearCase
(http://www.rational.com/products/clearcase/index.jsp)) can
help here. At certain times in the design flow, the entire design
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becomes frozen and can be re-instantiated at a later time
allowing to track a bug that shows up at a certain stage in the
design flow, but was not noticed before. Further aspects of
revision level tools are personal responsibility: the blocks can
be assigned to specific people in the team and cannot be altered
by others. Using such blocks, it is guaranteed that everybody
in the team is working in the same, rather than in a personal
environment. In order to guarantee backward compatibility it is
important to stick with one code and the same language for as
long as possible.

4. Furthermore, graphical systems allow an easy method of code
refinement by co-simulation. The code can be refined from one
revision level to the next and by instantiating the two versions
at the same time their output can be compared while they are
fed by the same input. An important step in code refinement is
the switch from float to fix-point code. The recent SystemC ini-
tiative [16] (http://www.systemc.org) supports this step by ex-
tending ANSI C with fix-point data types. A

�
RT-Library from

Adelante Technologies (now owned by ARM) offered such C++
Library extension for many years. The underlying idea is that by
providing more and more details in a code at a very high level,
the automatic tools modify the code iteratively into the required
(meta-) descriptions until the final product is defined in every
(technical) detail. These final descriptions express the code in
a desired form, i.e., assembler code to program a DSP chip,
VHDL or VERILOG code to program an FPGA or synthesize
the required masks for an ASIC. However, since the automatic
tools map the code from a high level to each of the lower levels,
the refinement of the code is only performed on the high level
description, i.e., the C-code. By iteratively rewriting the original
C-code used in simulation to suit the needs of a specific hard-
ware platform, the code remains backward compatible at any
state and thus allows all teams to share the code and investigate
problems. Specifically, there is no need to switch design envi-
ronments when transferring from one team to another. While
commercial tools rarely support hardware-in-the-loop this be-
comes an important feature to check proper functionality and
should be a requirement for future prototyping platforms. In
[14] a so-called real-sync method is reported on which allows
to map DSP algorithms automatically from Simulink to TI C6X
DSPs and run them there while the rest of the environment still
runs under Simulink.

5. One last aspect when analyzing the slow development process is
the team size. Poor communication is a drawback of rather large
teams. Fortunately, the required amount of people in a prototype
team is much smaller and it is possible to keep all team members
as one team supporting full information to everybody. This is
clearly a particularity in rapid prototyping that cannot easily be
realized in a large product design team.

Recent development of efficient chip design proposes to use so
called virtual prototoypes [17] before building HW. In this process
all HW aspects including busses and interfaces are modelled in SW
first. The advantages of such design process are that it supports re-
finement steps and the one-code paradigm and thus consistency of
the design avoiding errors. A further advantage in complex chip de-
signs is that the SW development can start before the HW is build.
Most of the refinement steps can be performed automatically by
translational tools further reducing error-prone manual processes
and increasing efficiency [18]. With the growing complexity of
MIMO algorithms, prototyping becomes more and more challeng-
ing. Thus, new concepts like virtual prototyping as an intermediate
step can be very useful.

4. DESIGN EXAMPLE

As a typical design example, we choose a MIMO transmission
utilizing Orthogonal Frequency Division Multiplex (OFDM)
technique - such a system will be shortly referred to as MIMO
OFDM system. We focus on OFDM, because it will be probably
one of the key technologies for the physical layer of 4G wireless

communication standards. Today’s communication standards, such
as Hiperlan/2, IEEE 802.11a/g, IEEE 802.16 and DVB, already
use OFDM for digital modulation. Even non-standardized wireless
products tend to use OFDM (http://www.airgonetworks.com).

4.1 MIMO OFDM

The basic idea of OFDM is to divide the carrier into multiple
orthogonal narrowband sub-carriers, so that the assumption of a
frequency flat fading channel valid and equalization becomes very
simple. In an OFDM system multipath fading in a wide band
channel does not produce self-interference, intra-cell-interference
and inter-symbol-interference. In addition a cyclic prefix is used
to combat the effect of delay spread. Because the Inverse Fast
Fourier Transform (IFFT) and the Fast Fourier Transform (FFT)
can be used very efficiently for OFDM modulation and OFDM
demodulation respectively, the complexity of an OFDM based
system is lower than for one using DS-CDMA. Main advantages
of an OFDM-system is that only a low-complex, memoryless
equalizer (only adjusting phase and magnitude of each subcarrier)
is needed while a DS-CDMA-based system has demanding
numerical load for equalization (equalization of time, phase and
magnitude), because of dealing with multiple delayed paths due to
the channel’s delay spread.

Typical MIMO techniques like Spatial Multiplexing or
Space-Time Coding, can be easily applied to the physical layer of
OFDM-based communication standards. In a straightforward way
a MIMO OFDM transmitter can be realised by multiple copies
of a SISO OFDM transmitter and some kind of multiplexing
or encoding before a transmit multiplexer. In Figure 1 such an
approach is illustrated, following the SISO physical layer in the
IEEE 802.11a specification [6]. Coding in form of Space-Time
Codes, as well as among groups of transmitter branches can be
deployed, see e.g. [19]. Note that Figure 1 points out only the
important base-band components, in order to simplify the block
diagram.

Starting with a coded bit stream (e.g. bit stream after applying
FEC-coding and interleaving), the bit stream is mapped to either
BPSK modulation or Gray-coded QPSK, Gray-coded 16-QAM,
Gray-coded 64-QAM modulation. Space-Time Coding can be
realized by a suitable encoder between the constellation mapper
and the succeeding multiple transmitter branches. Since each
branch is identically constructed, the following discusses only a
single transmitter branch.

A serial-to-parallel conversion in conjunction with a second
mapper are used to map the modulated symbols to 48 inputs of
a 64-point Inverse Fast Fourier Transform (IFFT), which is used
in order to modulate the symbols to the different sub-carriers. In
addition, pilot-sequences are inserted to four of the sub-carriers
inputs. The applied mapping scheme follows [6]. A guard
interval (GI) - also called cyclic prefix - is added by a modified
parallel-to-serial conversion, because GI addition is equivalent to
copying the last 16 sample outputs of the 64-point IFFT as prefix.
After this operation the whole OFDM symbol is constructed. After
pulse-shaping, the signal is up-converted to the radio frequency and
then transmitted by the corresponding antenna.

The MIMO OFDM receiver can also be split into parallel SISO
receivers. Figure 2 shows a straightforward scheme. Concentrating
again only to one of the receiver branches, the signal received
from the corresponding RF components is converted from serial to
parallel. It follows a synchronization unit (Sync) to synchronize the
timing and to correct the frequency offset of the signal. In addition,
the optimum FFT window has to be determined in order to remove
the guard interval (GI). A 64-point FFT demodulates the OFDM
symbol.
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All receiver branches are connected to a MIMO processing
block, which is used to perform the MIMO channel estimation and
memoryless equalization (phase, magnitude) to recover the trans-
mitted data-streams of each antenna. Afterwards, a space-time de-
coder and a modulation de-mapper are used to recover the coded
serial bit-stream, which is decoded later on by further processing.

4.2 Aptitude of digital signal processing devices: DSP

Before taking a look to the properties of modern digital signal
processors (DSP), it is reasonable to briefly review two basic
computer architectures both defined in the 1940’s (see [24], [25]
and [26]).
The famous Von-Neumann-Architecture represents the com-
monly used architecture of almost all computer systems. The
architecture consists of one CPU (Central Processing Unit) core
and one memory, which hold both program code and data. CPU
and memory are connected by an address bus for choosing the
memory address and a data bus to transfer the data. Because
data and program code share one memory, the CPU needs at least
two memory accesses - One to fetch the next instruction of the
program code and afterwards for example one to fetch data from
the memory.
In contrast, the Harvard-Architecture allows simultaneous access
to program code and data, because of two independent memories
- one for program instructions, one for data. A big drawback is,
that one will need now, two independent address- and data-buses,
which results in a doubled number of connection lines. Apparently,
the Havard-Architecture has higher complexity making it more
expensive. Nevertheless the Havard-Architecture with further
improvements (e.g. introducing cache memories and dual-data
fetch) is the commonly used architecture for DSPs, mainly because
of the decoupled memory accesses and therefore doubled memory
access bandwidth.
This leads to further differences of digital signal processors (DSP)
to general purpose processors (GPP) as commonly used in PCs:
They are optimized for operations in digital signal processing,
i.e., a DSP offers special hardware and instruction sets supporting
signal processing operations.

The most common task in digital signal processing is filtering.
Let’s assume an FIR-Filter with N coefficients. The output y�n� of
the filter is the convolution of the input signal x�n�with the impulse
response of the filter h�n�.

y�n��
N�1

∑
k�0

h�k�x�n�k� (1)

As we can see from eq. (1) the basic operation is the mul-
tiplication of two operands (h���, x���) and adding the result to
a so called accumulator, which represents after N iterations the
value of y���. Two operations are involved, the multiplication and
the addition. Normally, the overall operation is referred as MAC
(Multiply-ACcumulate)-operation. Basically, this MAC-operation
can be found in almost any algorithm dedicated to signal process-
ing, including also the important discrete Fourier transformation.
For a DSP it necessary to execute such operations very efficiently.
One way is to provide multiple MAC-Units directly in hardware,
but one drawback is the increased complexity of the resulting DSP,
which has basically to be also designed for low-power consumption
and low-cost. Note also that for many MAC-operations, alternative
formulations exist, for example CORDIC formulations for FFTs
avoiding multiplications and multiplier-free implementations for
FIR filters in communications [20]-[22].

Typical DSPs - for example TI’s C6000 family or embedded
processors like Starcore - are providing two and more independent
data-paths in the DSP, each data path with a set of more or less
specific Arithmetic-Logic-Units (ALU) performing logic (XOR,
OR, AND, NEG) and/or arithmetic operations (+, -, shift) and one
hardware multiplier (*) per path. Typical high-speed DSPs are

operating in fixed-point arithmetic but there are also floating-point
DSPs available. In order to store values (e.g. operands or results)
each data path has it’s own large register file (e.g. 32 or more
registers (32bit)). This allows operating without penalty for cache
or memory access. In addition one or more so-called cross paths
are provided to exchange data between the two data paths.
The memory architecture is typical based on the Harvard-
Architecture, but in extension further structured in three levels -
sorted by access speed. At first level two small (1 to 16 KByte), but
very fast 1st level caches are provided for caching program instruc-
tion or data for later re-use. In order to improve data operation both
data path can read simultaneously and independently from the 1st
level data cache and can normally fetch more than one operand per
memory fetch. The second level consists of 2nd level caches which
are build from slower, but even fast memory. Sometimes only one
2nd level cache memory is used to reduce the costs, so the memory
is divided in address spaces for program code and data. Typical
sizes for 2nd level cache are up to 1 Mbyte. 1st and 2nd level
caches represent the internal memory of a DSP chip. The third level
is the external memory normally applied as large SDRAM (128
MByte and more). Accesses to external memory and other external
devices or interfaces are managed by an (E)DMA (Enhanced
Direct Memory Access) controller. Because access to external
devices or memory is slow, the DSP programmer always tries to
reduce non-scheduled transfers to or from it during execution of an
algorithm. If it is possible to schedule the transfers, for example
an always incoming data-stream from an ADC, one can efficiently
make use of the features of the E(DMA) controller, by establishing
an (E)DMA channel. Using this channel the (E)DMA controller
transfers data to the internal memory, so that the data becomes
accessible without penalty. Only a latency for setting-up and estab-
lishing the channel is needed. Because using the external memory
interface (EMIF) is the only way to get data in or out of the DSP,
the bandwidth of this EMIF is the limiting factor for incoming or
outgoing data-rate and for the usage in a MIMO prototyping system.

As an introductory example, let us first consider the SISO
receiver case, assuming a signal bandwidth of a little bit less than
20 MHz (like used in IEEE 802.11a) so that a sampling rate of 40
MHz is needed (Nyquist-Rate). Also assume sampling with 16 bits.
Thus, the incoming data rate is 40 MHz �2 Byte � 80 MByte

�
s.

This is the incoming data-rate for the SISO case without assuming
any additional oversampling. In case of a MIMO receiver this data-
rate needs to be multiplied by the number of receive antennas MR
so a four antenna system has an incoming data-rate of 320 MByte/s.

Such high-data rates and the need to process the data somehow
will bring a DSP certainly to its limits. Let us consider a typical
32-bit EMIF with access to an SDRAM clocked with 100 MHz, so
it is in theory able to transfer 400 Mbyte/s. In practice, this high
data rate will not be achievable due to shared hardware and transfer
blocking. Although this transfer can be handled by the (E)DMA
controller, it will produce prohibitive load on the DSP, because the
DSP needs to maintain the (E)DMA from time to time and perform
operations on the data. In conclusion, a DSP only is appropriate
when the data rate of in- and outgoing data is much smaller than
the clock speed the DSP performs its operations.

But data-rate is not the only problem related to MIMO pro-
cessing with a single DSP. Due to its large complexity parallelism
is required and a MIMO receiver comprises of multiple data-paths,
which must be processed somehow. A typical DSP will fail here,
because it provides only limited parallelism of operation depending
on the usage of its fixed-sized DSP core. For example, only two
(up to four) multipliers are typically provided. Modern DSPs and
compilers try to provide parallelism in software, so they try to
process data serial, but fast enough so it seems to be parallel for
the outer process. Techniques like software pipelining and SIMD
(Single-Instruction-Multiple-Data) are most important here to
reach this aim.
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One of the biggest advantages of a DSP in rapid prototyping
is the ability to use a common high-level programming language
- namely C or C++. This makes a DSP easy-to-use and very
flexible in programming. Another advantage is that it can handle
irregular operations (e.g. protocol or controlling tasks), which are
cumbersome to built in hardware.

However, the programmer needs some effort to program the
DSP efficiently so as to meet the real-time condition. DSPs gain
most of their performance by the maximum utilization of the
functional units (ALUs, multipliers) and registers provided by the
DSP core. DSP manufacturers offer intrinsics (highly optimized
inline functions) for typical signal processing algorithms and tasks,
facilitating the reduction of development time of applications. In
addition, the compiler tries to achieve the maximum utilization by
optimizing code and scheduling of loops for software pipelining.
On the other hand software pipelining restricts the programmer to
linear code, so the programmer should avoid branching.
Another limit of a DSP is the lack of true bit-level operations,
because it is not possible to address bits directly1. The DSP
programmer may therefore use masking and related tricks to make
more efficient use of the DSP core resources - a resource efficiency
which is highly dependent on the type of DSP.

In conclusion, due to high data-rates and other disadvantages,
another signal processing device is needed in addition for regular
and/or true parallel operations, which can be implemented in fixed
specialised hardware structures. This processing devices should
act as pre-processing units, thus reducing data-rate and performing
regular operations - like filtering, FFT, IFFT - in multiple parallel
data paths. Also, the additional usage of hardware accelerators
(hardware for heavy computational tasks, e.g. Viterbi decoder) can
be advantageous.

4.3 Aptitude of digital signal processing devices: FPGA

For any development of high data rate systems, most often
digital front-ends, a high demand on numerical calculations in
a design specific environment is given. Field Programmable
Gate Arrays (FPGA) seem to be very suitable for this. A good
overview of FPGA techniques can be found in [23]. They use a
two-dimensional array of logic cells, consisting of Look-up tables
(LUT) and Flip-Flops. Some specialized functions like multipliers
and memory, depending on FPGA family and manufacturer, are
also available. These cells can be individually accessed by a user
defined routing, where a reload of the programming code after
power up is required (RAM based technology). Typical FPGAs in
wireless development are manufactured by XILINX, for example
the Virtex-II and ALTERA.

Because of the lower development level, typically a hardware
description language is required. Most often, VHDL or VERILOG
is used. As discussed in 3.2 graphical descriptions like Simulink
are very useful. Some tools offer direct conversion from graphical
tools to FPGAs. These near to hardware description tools offer the
possibility for highly flexible solutions in terms of speed and used
gate array space economically, which perfect fits to the prototype
system. However, due to the involved implementation complexity,
FPGAs represent also a bigger source for errors and cause time con-
suming development, e.g. by manual porting and testing algorithms.
On the other hand, these additional degrees of flexible design struc-
tures give the possibility for ’code’ optimization into the designer’s
hand. The used external hardware, like bus systems and AD and
DA converters, can be connected and be driven directly with their
own protocols. There are no limiting pre-designs, like DSP bus sys-
tems. Also many parts of ’classic’ digitally external hardware can

1Normally the smallest directly addressable data unit is byte (8 bits).

be shifted into the FPGA code. Depending on the programming of
the FPGA, the designed structures can run in parallel.

With view to modern wireless applications, a huge amount of
Multiply Accumulate (MAC) calculations is required as well as bit
level operations. Here, the use of an FPGA becomes strongly ben-
eficial. Without a processor pre-design like bus width or interfaces,
the designer can place the algorithms in form of dedicated hard-
ware. Hence, the FPGA is not only code optimized, it can be archi-
tecture optimized. Note also that there is no difference between a
bit level and a bus level operation, e.g. with an FPGA the required
bit length can be implemented with optimal width. An additional
benefit is that the design is compatible with future releases of the
FPGAs when bigger and/or faster FPGAs enter the market. As al-
ready mentioned in a previous section, the development time VHDL
or VERILOG code can be reduced by porting tools based on higher
level description languages.

4.4 Proposed Mapping to FPGA/DSP

Taking all the mentioned properties into account, algorithms like
S/P and P/S conversion, GI addition and removal, and the (I)FFT,
are typically candidates for a solution in an FPGA on behalf of the
DSP. The parallel antenna branches facilitate further the FPGA im-
plementation of these front-end operations without any loss of flex-
ibility. In order to gain some flexibility in MIMO algorithm choice,
it is favourable to choose a fixed-point DSP as target platform for
digital backend processing as shown in Figure 2. Furthermore, a
floating point DSP can be added for sophisticated algorithms and
controlling or protocol tasks as has been done in [5] for realizing
the numerically demanding V-BLAST algorithm.

5. CONCLUSIONS

In this contribution an overview is given of prototyping for wireless
MIMO systems. Embarking upon general considerations towards a
flexible, scalable and modular MIMO platform for indoor scenar-
ios, we proceed with a universal methodology and list the relevant
issues - the five one’s approach - in order to succeed in rapid MIMO
prototyping. Then, we focussed on a particular design example,
explained the challenges and proposed a basic strategy in order to
adequately split the numerical load among DSPs and FPGAs. Re-
garding the analog front-end a standard RF-connection further in-
creases the flexibility of the platform, so that either discretely im-
plemented RF-front-ends, but also RF-chip-based evaluation boards
can be easily deployed.
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