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ABSTRACT
In this paper, we propose a method to estimate the spectrum
baseline. Basically, it consists in finding a low-order polyno-
mial that minimizes the non-quadratic cost function. The op-
timization problem is solved using half-quadratic minimiza-
tion. Two different cost functions are considered: firstly, the
hyperbolic function which can be minimized using the algo-
rithm ARTUR; secondly, the asymmetric truncated quadratic,
which is minimized with the algorithm LEGEND. The latter
gives the best results. This can be attributed to its asymmetric
shape and its constant part for high positive values, making
it better adapted to the problem than the hyperbolic function.
The performances of these approaches are illustrated both on
a real and simulated spectra and the choice of the hyperpa-
rameters is also discussed.

1. INTRODUCTION

In spectroscopy (e.g. infrared absorption spectroscopy or
Raman inelastic diffusion), the interpretation of spectra can
be hampered by an unknown background, called baseline in
chemistry (figure 2 presents a real gibbsite spectrum). This
baseline is mainly due to fluorescence phenomenon or ex-
tern light. This work addresses the estimation of the baseline
which, after subtraction to the spectrum, yields a more in-
terpretable signal for chemists. Many approaches have been
proposed to estimate the baseline for its subtraction. The
method the more used in chemistry needs the operator inter-
vention to select a set of points belonging to the baseline;
then it performs a least squares polynomial fitting on this
subset: this method corresponds to a least trimmed squares
problem [1] without an automatic subset determination. Yet,
automatic methods have been developed, such as direct or-
thogonal signal correction [2, 3], wavelet transform [4, 5, 6]
and Bayesian approach [7, 8, 9]. This work proposes an ap-
proach fast and simple to implement, consisting in estimating
the baseline as the low-order polynomial whose coefficients
are estimated using a cost function adapted to the problem.
Spectra may be modelled as the sum of:

– positive pikes with different shapes, locations, widths
and amplitudes, containing the relevant information for
chemists;

– a baseline modelled as a p-order polynomial;
– a white Gaussian and additive noise which gathers misfit

errors and model uncertainties.
Let y =b+n be the N data points, where b denotes the base-
line, and n the sum of the two other signals. Noting the poly-
nomial coefficients as a = (a0...ap)

T and the evolution vari-
able (the wavenumber in the case of spectra) as t= (t1...tN)T ,
the baseline reads: b = Ta with T = (t0...tp). The signal

n being the sum of positive pikes and Gaussian noise, its
distribution is an asymmetric function with an heavy tail in
the positive part. This paper is organised as follows. Sec-
tion 2 presents and discusses two non-quadratic cost func-
tions, the hyperbolic function (HF) and the asymmetric trun-
cated quadratic (ATQ), from which the polynomial coeffi-
cients are estimated using half-quadratic (HQ) minimization.
The case of the HF is considered in section 3. This cost func-
tion being symmetric and convex, the algorithm ARTUR may
be used to perform its minimization. On the contrary, the
ATQ is neither symmetric nor convex. So, in section 4, we
propose to minimize it with the algorithm LEGEND. Sec-
tion 5 gives statistics on simulations and shows results on
a real spectrum. The choice of the hyperparameters is also
discussed. Finally, section 6 concludes the paper and gives
some perspectives of this work.

2. HQ MINIMIZATION FOR BASELINE
ESTIMATION

The HQ minimization is an iterative technique that enables to
simplify the optimization of a non-quadratic cost function ϕ .
In other words, it aims at minimizing a criterion J , func-
tion of the error ε = (ε1...εN)T between the spectrum and the
estimated baseline:

J (a) =
N

∑
k=1

ϕ (εk) =
N

∑
k=1

ϕ (yk − (Ta)k) ,

where (Ta)k means the kth element of vector (Ta). The first
point addressed in this section is the design of criteria well
suited to the problem of baseline estimation. Then we will
present the main ideas of HQ minimization.

2.1 Criterion Design

The least squares method corresponds to the quadratic cost
function (see figure 1):

ϕ(x) = x2.

Its probabilistic interpretation shows that this corresponds to
consider that n is Gaussian, which is clearly not the case (see
section 1). In fact, this cost function ϕ gives a too high cost to
high values, i.e. the pikes, which greatly affects the baseline
estimation. The first proposed cost function is the HF which
is (almost) quadratic for low values (indeed the noise can be
considered Gaussian in the neighborhood of zero) and grows
linearly, thus reducing the pike influence (see figure 1):

ϕ(x) =
√

x2 + s2 − s.
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Figure 1: Quadratic (· · · ), HF (−·) and ATQ (—) cost func-
tions. s = 2.

The hyperparameter s may be considered as the border be-
tween the quadratic and the linear part; it is unknown and has
to be fixed (see section 5.2). This cost function has the ad-
vantage of being convex, which ensures its global minimum
to be reached using the algorithm ARTUR [10, 11]. A pro-
babilistic interpretation of this cost function indicates that n
is considered approximately Gaussian around zero but heavy
tailed for both positive and negative parts. This cost function
is clearly better than the quadratic for our problem, but it is
also symmetric, contrary to the true distribution of signal n
(see section 1). To handle this drawback, we have to design
a cost function which should be asymmetric. A possibility is
the asymmetric Huber function, which is a quadratic for x < s
(with s > 0) and linear elsewhere. However, to reduce much
more the high value influence, the cost function may be set
constant beyond the threshold s. This yields the second cost
function: the ATQ (see figure 1):

ϕ(x) =

{
x2 if x < s,
s2 if x ≥ s.

This function being neither convex nor symmetric, its mini-
mization is performed by the algorithm LEGEND [10, 11].

2.2 Principle of HQ Minimization

The HQ minimization aims at simplifying the optimization
of the criterion J (a) by introducing an auxiliary variable
d leading to an augmented HQ criterion K (a,d) admitting
the same minimum than J (a). The following HQ func-
tions are proposed by Geman & Reynolds [12] and Geman
& Yang [13] respectively:

KGR(a,d) =
N

∑
k=1

(
dk(yk − (Ta)k)

2 +ψ(dk)
)
,

KGY (a,d) =
N

∑
k=1

(
1
2
(yk − (Ta)k −dk)

2 +ζ (dk)

)
,

where both functions ψ and ζ can be defined from ϕ as
(see [10] for details):

ψ(d) = sup
x

(
φ(x)−dx2) ,

ζ (d) = sup
x

(
φ(x)− (x−d)2/2

)
.

Note that both KGR and KGY are quadratic functions of a
and convex functions of d, justifying the name “HQ crite-
rion”. They can be optimized with linear algebraic methods.

In computed imaging, the algorithm ARTUR enables the opti-
mization of KGR, while the algorithm LEGEND is associated
with KGY [10]. Both algorithms estimate alternatively a and
d as follows:

initialize a

repeat until convergence:

d̂i = argmin
d

K (â(i−1),d) (1)

âi = argmin
a

K (a, d̂i) (2)

In our application, a is initialized as the least squares esti-
mation. Due to the properties of the cost functions, the HF
is minimized using ARTUR and the ATQ using LEGEND. The
convergence of the algorithm is supposed to be reached when
the norm of the criterion gradient (simply computed as the
difference between the current and last criterion values) be-
comes lower than a predefined value.

3. FIRST COST FUNCTION: THE HYPERBOLIC
FUNCTION

The following conditions [10]

ϕ is even;

ϕ(
√
·) is concave on R

+;

ϕ is continuous near zero and C 1 on R\{0};

being satisfied by the HF (because the checking of these con-
ditions is trivial, it has been omitted), the algorithm AR-
TUR [10, 11] can be implemented to minimize KGR. At it-
eration i, minimizing KGR with respect to a while keeping
d constant, yields an explicit solution of (2) (for notational
simplicity, index i has been dropped):

(
TT DT

)
â = TT Dy

where D = diag{d1...dN}. The second step consists in mini-
mizing KGR with respect to d while a is kept constant and
yields the solution of (1):

d̂k =

{
d∞ = limε→0 ϕ ′(εk)/2εk if εk = 0,

ϕ ′(εk)/2εk otherwise.

Figure 2 shows a baseline estimation on real data, and the
performances of this approach have been assessed by nu-
merical simulations (section 5). Even if its performances
are better than those of a least squares estimation, it does
not achieved a satisfying baseline estimation: this can be at-
tributed to the fact that the cost function is symmetric.

4. SECOND COST FUNCTION: THE
ASYMMETRIC TRUNCATED QUADRATIC

The ATQ has two main advantages over the last function:
first, it is asymmetric, so the pike positivity is better tak-
ing into account; second, it is constant beyond a threshold,
so the estimation is less affected by the high values of posi-
tive pikes. As a consequence, the estimated baseline should
tend toward the bottom of the spectrum which is expected to
represent the actual spectrum baseline. However, this func-
tion is neither even nor C 1, deterring the algorithm ARTUR to
be applied: instead, the algorithm LEGEND [10, 11] is used
(section 4.1).
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4.1 Minimization with LEGEND

From [10, lemma 1], the condition for using LEGEND for HQ
minimization is that it exists α > 0 such as x2/2−αϕ(x) is
strictly convex. In our case, the set of nonnegative α that
renders x2/2−αϕ(x) strictly convex is the interval [0;αmax[,
with αmax = 1/2. In the sequel, we have chosen α = 1/3.
The minimization of KGY with respect to a when d is fixed
yields: (

TT T
)
â = TT (y+d).

Note that, for an efficient implementation, the matrix
(TT T)−1TT can be calculated only once at the beginning
of the procedure. Keeping a fixed, d is then estimated as:

d̂k = εk −αϕ ′(εk).

Note that the ATQ being non-convex, it turns out that the cri-
terion J (and consequently KGY ) may have local minima.
So, by using LEGEND to minimize it, we cannot guarantee
the global minimum to be reached. However, in all the trials
that have been performed, both on simulated and real spec-
tra, the estimated baselines were very close to the actual ones,
letting us to think that in each cases, the global minimum was
reached. In addition, results achieved on simulated and real
data clearly show that, among the three methods considered,
this is the one which yields the best performances.

4.2 Remark

It can be noted that the ATQ cost function is similar to that of
a least trimmed squares (LTS) approach, as defined in [1]. In-
deed, the LTS performs a least squares estimation on a subset
of the spectrum data points, while ignoring the other points
(pikes in our application) which is equivalent to assigning
a constant cost to these pikes. Because the HQ minimiza-
tion approach gives a constant cost to pikes and a quadratic
cost to the rest of the spectrum, it also defines two subsets
of points. Assuming that the same points are affected to the
two subsets, both methods would produce exactly the same
result from which it can be concluded that the two meth-
ods are equivalent. In fact, the only difference between the
two approaches comes from the way how the subset search
is performed. Table 1 reveals that these methods give al-
most equivalent results in terms of EQM while our method is
faster.

5. RESULTS & DISCUSSION

This section aims, first, at comparing the performances of
the different methods (quadratic, HF, ATQ cost functions and
FAST-LTS) and, second, at discussing the influence of the hy-
perparameters (polynomial order p and threshold s).

5.1 Performances of the Methods

The approaches have been applied to a real Raman spectrum
(gibbsite Al(OH)3) whose baseline results from fluorescence
phenomena. In this experiment, the polynomial order was
set to 6 and the threshold s (for the two proposed meth-
ods) has been determined after successive trials as the one
which was giving, visually, the best results. Figure 2 shows
the estimated baseline corresponding respectively to the least
squares (LS), {HF+ARTUR}, and {ATQ+LEGEND}. It ap-
pears that among the three methods, {ATQ+LEGEND} gives
the best results. In order to get some quantitative insights into
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Figure 2: Baseline estimation on real data (least squares es-
timation: · · · , HF estimation: – –, ATQ estimation: —).

the performances of the different methods, 50 trials were car-
ried out1 on 256-point simulated spectra with a SNR (defined
as the power ratio of b and n) of 15 dB. In all cases, the
baseline was estimated as a 6-order polynomial, which ap-
pears to be a good choice giving satisfactory estimations in
our application; and the threshold s was set to the same value
for both {HF+ARTUR} and {ATQ+LEGEND}. The mean time
and the mean square error MSE (between the real and esti-
mated baseline) corresponding to each approach are given in
table 1. Obviously, the least squares approach is the fastest

mean time mean MSE
LS 8 ms 16.50
HF 235 ms 3.88
ATQ 63 ms 0.17
FAST-LTS 2278 ms 0.23

Table 1: Performances of the three estimation methods and a
LTS one.

but yields the worst results in terms of MSE. The two other
cost functions give better results. But the simulations show
that, not only {ATQ+LEGEND} is faster than {HF+ARTUR}
(this is because the matrix (TT T)−1TT is calculated once),
but it is also better in terms of MSE.

5.2 Influence of the Hyperparameters

The hyperparameters of the methods are the polynomial or-
der p (LS, HF, and ATQ) and the threshold s (HF and ATQ).

Let us first discuss the choice of p. It depends on the
shape of the baseline. The smoother the baseline is, the lower
order should be. Indeed, choosing a too high order results
in a baseline estimation which will be much more affected
by the pikes. But the polynomial order should be chosen
high enough to fit the baseline irregularities. This point is
illustrated on figure 3. On the top curve, it appears that a too
low order yields a too smooth estimation while on the bottom
curve a too high order yields a baseline estimation too much

1with Matlab 6.5 on a PC Pentium 800 MHz.
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Figure 3: Importance of the polynomial order (order 6: —,
order 3: – –, order 16: · · · ).

irregular (see e.g. the 50 first points of the baseline which is
affected by the three pikes).

The influence of the second hyperparameter is also very
important: if the threshold is too low, then the cost func-
tion tends to a quadratic in the negative part and to a low
value constant function in the positive part. Considering the
limit case where the cost function is quadratic in the negative
part and equals zero in the positive part, then any estima-
tion strictly below the spectrum will give a criterion equals
to zero. Thus, choosing a too low value of s will tend to
push the baseline down to the bottom of the spectrum. On
the contrary, if the threshold is too high, the cost function be-
comes equivalent to a quadratic, and the estimation tends to
the least squares estimation. Finally, it is clear that the thresh-
old value depends on the Gaussian noise variance. Basically,
this threshold defines the border between noise (quadratic
part) and pikes (constant part), and as a result, s should vary
proportionally with the noise variance. Here, it has been set
empirically by performing successive trials and choosing the
one which was giving the best result, but we are currently
working on its estimation.

6. CONCLUSION

The HQ minimization was applied to the problem of spec-
trum baseline estimation as a low-order polynomial. Two
cost functions have been considered: the HF and the ATQ.
The optimization was carried out with the HQ minimization,
which simplifies the optimization of a non quadratic crite-
rion. The best results were achieved by the ATQ cost func-
tion, this can be attributed to the fact that this cost function
is better suited to the problem than the LS and HF cost func-
tions. In addition, as far as we know, this is the first time that
HQ minimization is applied to an asymmetric cost function.
From the many experiments we have performed, it appears
that the hyperparameters should be well chosen to give satis-
factory results. In this paper, we do not have addressed the
problem of estimating these hyperparameters. This will be
the subject of further investigations. Concerning the polyno-
mial order, rather than trying to estimate it, alternative ap-
proaches may be envisaged. For example, the polynomial
order may be kept constant to a high value, while imposing
a quadratic smoothness constraint on the baseline, resulting
in a compound criterion which can be optimized using HQ

minimization as well. Finally, this method will be extended
to the problem of joint baseline estimation and spectrum de-
convolution.
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