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ABSTRACT
Transmission schemes for flat multi-input, multi-output (MIMO)
channels are well established for the cases where perfect channel
state information or no channel state information is available at
the transmitter. However, communication over channels where the
transmitter has access to partial or imperfect information has re-
ceived less attention. If exploited, such information has the poten-
tial of improving system performance and reducing the bandwidth
requirements of feedback links or the required quality of channel es-
timates. Herein, a simple design scheme is introduced, that approx-
imately maximizes the data rates of MIMO communication systems
where the transmitter has access to partial channel state information
in the form of covariance feedback or erroneous channel estimates.
An algorithm is presented which is computationally attractive and
performance gains are shown when compared to systems not using
this information.

1. INTRODUCTION

By employing multiple transmit and receive antennas in a commu-
nication system, dramatic increases in data rates can be achieved
as compared to single antenna alternatives [1, 2]. Several prob-
lems still remain when designing a well optimized MIMO system
in practice. For example, well established techniques exist for cases
where either perfect channel information or no channel informa-
tion is available at the transmitter, see e.g. [2, 3]. However, the
case when partial or imperfect channel estimates are available at the
transmitter are not as well understood.

Recently, some schemes have been developed that take advan-
tage of partial channel information at the transmitter, see e.g. [4]. In
these schemes, the transmitted data is optimized in order to mini-
mize the error rate at the receiver given a certain bit rate. While this
is desirable in some situations, in others it might be more attractive
to, given a certain design bit error rate (BER), maximize the data
rate of the system. When the channel is perfectly known, a prac-
tical solution to this optimization problem is spatial loading [2, 5].
Here, parallel, non-interfering spatial channels are first created us-
ing a linear transformation and then bit constellations and power are
allocated for the different “spatial carriers” in order to maximize the
data rate given some quality constraint on the received data, much
in analogy with adaptive loading techniques commonly used in dis-
crete multi-tone (DMT) systems [6]. In [7] we extended the concept
of spatial loading to the case where imperfect channel state infor-
mation is available at the transmitter. In contrast to the case where
the channel is perfectly known and the case of DMT with imperfect
channel estimates [8], when the MIMO channel estimates at the
transmitter are erroneous it is not possible to create non-interfering
parallel channels. This complicates the system design and increases
the complexity of the receiver.

Herein our earlier work [7] is extended to also include the case
where channel statistics, but no estimates of the individual channel
realizations, are available at the transmitter. A simple and compu-
tationally efficient approximative method for maximizing the data
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rate given second order channel statistics and a design error rate is
presented and numerical examples illustrate the capability to exploit
some of the potential gain in the available channel information.

2. SYSTEM MODEL

We consider a MIMO communication system consisting of nt trans-
mitters communicating with a terminal with nr receivers over a flat
fading channel. Transmission over the channel is modeled through
a channel matrix, H ∈ C

(nt×nr), the elements of which model the
attenuations and phase differences between the various transmit-
ter/receiver pairs. The output, x∈C

nr , resulting from a single usage
of the channel to transmit the data s ∈ C

nt , is then found as,

x = Hs+n, (1)

where n ∈ C
nr is additive white complex Gaussian noise. In or-

der to make the required output power of the different transmission
schemes presented in the paper comparable, the signal to noise ratio
(SNR) is defined as the quotient between the power of the received
data signal, E |Hs|2, and the received noise power, E |n|2, when
equally powered uncorrelated data is transmitted, i.e when E{ss∗}
is a scaled identity matrix. Without loss of generality, the received
noise is normalized so that n ∈ C N (0,I) and the channel matrix
is normalized so that E‖H‖2

F = ntnr. Applying the definition and
normalizations above then gives the SNR as E |s|2 = P.

3. PARTIAL CHANNEL STATE INFORMATION

In what follows, the receiver is assumed to have perfect knowledge
of H when it tries to detect the transmitted symbols. However, the
channel knowledge at the transmitter is not necessarily perfect or
complete. There are several possibilities for the transmitter chan-
nel estimate to be in error. For example, the channel may have
changed between the estimation and the usage of the estimates due
to delay or the channel estimate may have been obtained via a low
rate feedback channel not able to provide accurate estimates due to
heavy quantization. In scenarios where the channel changes too fast
to keep the transmitter estimates updated it may be more attractive
to estimate the channel second order statistics which change at a
slower pace. This will reduce the bandwidth requirements on the
feedback channel.

In order to exploit the partial channel knowledge at the trans-
mitter H is modeled stochastically. The model for H depends on
the type of information available. Here it is assumed that H, given
the available channel knowledge, is complex Gaussian,

vecH ∈ C N (vecĤ,RH),

RH = E{vecHvecH∗},
(2)

where the channel state information consists of Ĥ and RH.
In this work two special cases of the model above are consid-

ered, mean and covariance feedback, see [9].

3.1 Mean Feedback
The channel state information consists of the channel mean Ĥ and
the covariance matrix RH = σ2

H
I. Note that Ĥ can be seen as an
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estimate of H and σ 2
H

as a measure of the uncertainty in this esti-
mate. The normalizations in the previous section imply that σ 2

H
= 1

results in Ĥ = 0 or no channel knowledge while σ 2
H

= 0 results in
Ĥ = H or perfect channel knowledge. In [7] a simple method for
optimizing the transmitted data given partial channel knowledge as
above is developed.

For details regarding this method as well as numerical results,
the reader is referred to [7].

3.2 Covariance Feedback
Consider the “Kronecker channel model” [10] which is realistic for
indoor non-line of sight conditions and limited array apertures [11].
Here the channel mean, Ĥ is zero and the covariance matrix RH is
structured as RH = RT

t ⊗Rr (where ⊗ is the Kronecker product),
i.e. H may be generated as

H = R
1/2
r GR

1/2
t (3)

where G is an nr by nt zero mean complex Gaussian matrix with
IID elements distributed as C N (0,1). The non-negative definite
matrices Rt and Rr can be interpreted as the covariance between
the transmitters, the rows of H, and the receivers, the columns of
H, respectively. The normalization imposed in Section 2 implies
that Rr and Rt should be chosen so that TrRt = nt and TrRr = nr.

Below, a simple and computationally efficient method is pro-
posed that approximately maximizes the data rate of a spatially mul-
tiplexed MIMO system. It is applicable when covariance feedback
is available according to the model above.

4. SPATIAL MULTIPLEXING AND LOADING

The basic idea behind bit and power loading algorithms is to opti-
mize the transmitted vector data so that the available transmit power
is used most efficiently. For the system (1) the optimal transmit
data design when the channel is known at the transmitter is, from
a capacity [1] viewpoint, to diagonalize H, creating parallel spatial
channels. This is achieved by using a singular value decomposi-
tion and to transmit Gaussian distributed data symbols with power
allocated using the well known water-filling solution. This way,
transmit power is allocated to the directions where it is put to best
use, i.e. in directions with little attenuation, more power is allocated
and higher data rates can be supported.

For practical systems, using Gaussian distributed symbols is not
an option. Instead the transmitted data symbols belong to some
finite alphabet, resulting in an optimization problem where differ-
ent constellation sizes and transmit powers are allocated to differ-
ent directions in order to satisfy some constraint on the quality of
the received data and to maximize data rates. Here, we term this
type of technique spatial loading and in the subsections below such
schemes are discussed and presented for different scenarios. In all
cases we attempt to optimize the transmit data rate, given some de-
sign uncoded BER and transmit power constraint.

In the design of a general spatial loading system it is natural to
introduce some structure in order to characterize the spatial proper-
ties of the channel and to simplify the following adaptive loading.
To that end, let s=VTxP

1/2d and y =URxx, where VTx and URx
are unitary matrices characterizing the directivity of the spatial load-
ing system, P is a diagonal matrix defining the power loading in the
different "directions", y is the received data to be considered by the
detector and d are the transmitted symbols. Based on these defini-
tions, the effective system between transmitter and receiver can be
modeled as,

y = URx(HVTxP
1/2d+n) = H′P1/2d+n′, (4)

where H′ is the effective channel matrix and n′ is the effective noise
of the MIMO channel between d and y. Note that since URx is
unitary the effective noise is still white complex Gaussian, each el-
ement of variance one. Also, since URx and VTx are invertible and
the distributions of n and n′ are identical the system (4) is equiv-
alent to (1). The transmitted symbols are considered uncorrelated,

with zero mean and normalized to variance one. The normalizations
from Section 2 imply that P should be chosen such that TrP = P.

The focus of this preliminary study is on the uncertainty aspect
of the channel, not on the receiver algorithm or bit loading scheme
being used. In order to simplify the interpretation of the results
and the discussion below, a maximum likelihood (ML) detector is
employed in all cases and the well known greedy Hughes-Hartogs
algorithm [12, 6] has been selected for the spatial bit and power
loading. While these choices may be too computationally demand-
ing for practical implementations, they simplify the derivation and
presentation. For reference, the Hughes-Hartogs adaptive loading
algorithm for parallel channels consists in principle of the follow-
ing steps,
1. Try to increase the constellation size by one for all the symbols

of d, one at the time. Add enough power so that the bit error
constraint is not violated.

2. Increase the constellation size and allocate power to the symbol
requiring the least additional power in the previous step.

3. Repeat until the available power is insufficient to add more bits
given the error constraint. If desirable, any remaining power can
be spread over the bits to improve the error rate performance of
the wireless link.

4.1 Perfect Channel Knowledge
When the transmitter has perfect channel knowledge, a well known
spatial loading scheme based on a singular value decomposition of
the channel matrix can be applied [2, 5]. By choosing URx and VTx
as the transposed conjugate of the matrix containing the left singu-
lar vectors and the matrix containing right singular vectors respec-
tively, the channel between d and y is diagonalized and min(nr,nt)
non-interfering scalar channels between the transmitted and the re-
ceived data are formed. Since each of these parallel channels are
characterized by an SNR given by the singular values of H, bit and
power loading using the algorithm above is straightforward.

4.2 No Channel Knowledge
For the case when the transmitter has no knowledge of the channel
it is not possible to optimize the directivity of the transmitting array.
Here, we assume that a non-line of sight system is considered where
the antenna elements are sufficiently separated so that the elements
of H can be considered independent Rayleigh fading.

For this type of system several techniques such as BLAST [13]
or more sophisticated space-time coding schemes [3] have been de-
signed. While elaborate techniques are required for efficient detec-
tion of the transmitted symbols and coding is required for optimal
performance we here only consider a system where the transmit-
ter transmits uncoded symbols, y, with equally distributed power,
P = P/ntI, and the receiver uses an ML-detector to estimate the
transmitted symbols.

Note that these type of systems can be expected to perform well
as long as the channel elements are independent. However, if the
elements of H are correlated some directions in space will suffer a
higher attenuation than others and this scheme will waste transmit
power in those directions.

4.3 Beamforming
With access to channel statistics at the transmitter, beamforming
schemes can be designed by choosing the transmitted data vectors
so that the average received signal power is maximized. For exam-
ple, in the case of covariance feedback according to the model in
Section 3.2, this would mean allocating all data and power to the
direction corresponding to the maximum eigenvalue of Rt, i.e. all
data is transmitted over a single spatial channel. Note that this so-
lution is optimal if the elements of H are perfectly correlated and
only one spatial channel can be supported. In other cases, where
H has a rank higher than one, the technique may be wasteful since
available spatial dimensions are not being used.

4.4 Covariance Feedback
If covariance feedback is available, one method of optimizing the
system could be to, depending on the amount of correlation, chose
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one of the two methods above. Such a solution however, is not very
elegant and suffers from suboptimal performance except in the ex-
treme cases of perfectly correlated or uncorrelated channels. Below
we instead propose to use a spatial loading scheme to optimize the
transmitted data and adapt it to the available channel information to
provide a smooth transition between the cases above. When perfect
channel knowledge is not available at the transmitter, optimizing the
transmitted data becomes more complicated. For example, it is no
longer possible to completely diagonalize the channel and the par-
allel data streams will interfere at the receiver. Instead we take an
approximate, sub-optimal approach that results in a simple and effi-
cient design algorithm and illustrate its performance with numerical
examples.

Let Rt = VtΛtVt
∗ and Rr = VrΛrV

∗
r be the eigenvalue de-

compositions of the transmit and receive covariance matrices. The
transmitter and receiver directive matrices, VTx and URx are se-
lected as VTx = Vt and URx = V∗

r resulting in an efficient system,

y = Λ
1/2
r G′Λ

1/2
t P1/2d+n′, (5)

where G′ = V∗
r GVt has the same distribution as G since Vr and

Vt are unitary. While we do not claim that this choice of VTx and
URx is optimal it can be motivated in a number of ways. Firstly,
given the channel knowledge at the transmitter, the received signal
power for the first symbol in d, E |URxHVTxP

1/2d1|
2 is maxi-

mized. Here, dk is a vector where all entries are zero except for
the kth entry which is identical to kth element of d. Similarly the
second element is transmitted in the orthogonal direction, in C

nt , to
the first, that maximizes the received signal power and so on. Hence
given this choice of directive matrices it is possible to ensure that
data is transmitted in the directions where the receive conditions are
likely to be the most favorable. Secondly, this choice can be moti-
vated by capacity arguments, see e.g. [14, 9]. Lastly, this choice of
URx ensures that the elements of H′ are uncorrelated significantly
simplifying the BER computations in the following loading step of
the proposed design process. Note that since URx is unitary and
an ML-detector is used the choice of URx in the receiver does not
affect the resulting error probability for the designed system.

In order to provide a practical spatial bit and power loading
scheme it is necessary to be able compute the resulting BER for
various constellation sizes and output powers efficiently. Since the
communication channels are interfering this is complicated and for
a computationally attractive scheme some approximations are nec-
essary. Firstly, we assume that the design BER is chosen so low
that more than one symbol error per received vector y is rare. Thus,
when computing the error rates of the ML-detector for each of the
transmitted symbols in d it is assumed that the other symbols have
been correctly detected and subtracted from the received data, i.e
error propagation is ignored. Note that this approximation can be
expected to work better when there are more receive antennas than
spatial channels, and in practice it is good to limit the number of
channels to min(nr,nt) or less. Furthermore, we assume that the
transmitted symbols have been Gray-encoded so that, given the low
design BER, the number of bit errors can be approximated by the
number of symbol errors. These approximations, result in a sim-
plified model where it suffices to compute the error probabilities
of scalar symbols, transmitted over non-interfering vector chan-
nels consisting of independent Rayleigh fading elements. For these
channels, efficient techniques for computing the error probability
for many types of constellations exist [15]. Note that since the vari-
ances of the vector channel elements are determined by Rt and Rr,
see (5), the bit and power loading in the different directions are
adapted to the uncertainty of the channel.

Using the selected VTx and URx and the approximations above,
the spatial loading can be performed in a simple and computation-
ally efficient manner following the method of Section 3. While the
resulting design is clearly suboptimal, note that for completely un-
correlated channel elements, i.e. when Rt = I and Rr = I, our
solution converges to the well know solution of Section 4.2. Also,
when the channel elements are perfectly correlated, our algorithm

produces a beamforming solution, concentrating all transmit power
on the single available spatial channel.

5. NUMERICAL RESULTS AND ANALYSIS

Since an analytical analysis on the performance of the method pro-
posed in the previous section would be difficult, a numerical anal-
ysis is performed. The simulations performed in this study were
simplified by limiting the bit-loading algorithm to square M-QAM
constellations, where M = 22b and is b integer valued. Note that re-
sults such as those in [15] allow a larger selection of constellations
which may be desirable.

To make the simulations efficient, the ML-detector at the re-
ceiver was implemented in the form of a sphere decoder [16]. For
reasonably sized arrays the sphere decoding algorithm is on aver-
age very efficient, significantly shortening the time required to find
the ML-solution compared with a full search. In the case of spa-
tial loading, the sphere decoding algorithm needs to consider the
different constellations transmitted in the different elements of d.

While the algorithm presented herein is applicable to general
Rr and Rt, to keep things simple, in all examples below, the trans-
mitter correlation matrix, Rt, is selected as

Rt =













1 ρt
∗ ρ2

t
∗

· · · ρnt−1
t

∗

ρt 1 ρt
∗ ρnt−2

t
∗

...
. . .

ρnt−1
t ρnt−2

t · · · 1













. (6)

A similar model is used for Rr, but with ρr instead of ρt, |ρr| < 1,
|ρt| < 1, and in the examples below ρr = ρt.

5.1 Example: Data Rate Performance

Fig. 1 illustrates how the proposed method can exploit some of the
available information in order to increase the data rate of the sys-
tem. The data rate performance of the algorithm is compared with
the two simpler schemes of Sections 4.2 and 4.3. In this downlink
scenario an nt = 6, nr = 3 antenna system with ρr = ρt = 0.8 is
considered operating at SNRs of 15 and 25 dB. During the loading
procedure described in Section 4.4, the number of spatial channels
were limited to three and to make the comparison fair in terms of
transmit power, any residual power left after the loading procedure
has been added evenly over those channels.
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Figure 1: Data rate performance, ρr = ρt = 0.8, nt = 6, nr = 3.

From the figure, notice how the algorithm presented herein is
capable of outperforming the two simpler methods. This illustrates
that this method, while simple, has the capability to exploit some
of the information in the available channel statistics in order to in-
crease the data rates of the system.
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5.2 Example: Bit Loading Strategy
To further illustrate the behavior of the proposed algorithm, Table 1
shows how the transmitted bits are allocated as a function of ρr = ρt
for this nr = nt = 4 scenario. While the design BER in the exam-
ple is 0.003 for the entire Table, as the resulting error rates vary
between the different channels, this Table is not intended to indi-
cate the resulting bit rates of a practical system but to show how
the bits are distributed over the different spatial channels. Note that
when ρr = ρt → 0 signal power and transmitted data are transmitted
as evenly as possible in space given the restriction in constellation
sizes. On the other hand, when ρr = ρt → 1 power and loaded bits
are concentrated in the direction with the lowest attenuation. This
intuitive result illustrates how the proposed method is capable of
adapting the transmitted data to the available channel knowledge
and providing a transition between the extreme cases of an uncorre-
lated channel and a perfectly correlated channel.

ρr = ρt 0.0 . . . 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Chan. 1: 6 . . . 6 6 8 8 8 8 6 8
Chan. 2: 6 . . . 6 6 6 6 6 4 4 0
Chan. 3: 6 . . . 6 6 4 4 4 2 2 0
Chan. 4: 6 . . . 6 4 4 4 2 2 0 0

Table 1: Bit allocation, design SNR 25 dB, BER 0.003, nt = nr = 4.

5.3 Example: Performance of the Approximation
Finally, the performance of the approximations leading up to the bit
loading algorithm is evaluated. Fig. 2 shows the resulting BER as
a function of the design BER for an nt = 6, nr = 3 system operat-
ing at an SNR of 20 dB. Like in Section 5.1 the number of spatial
channels were limited to three but in order to be able to evaluate the
performance of the approximations, remaining power after the bit
allocation is not allocated to any spatial channel. As the approxi-
mations used in deriving the proposed method are underestimating
the probability of error, the design BER is lower than the resulting
BER. While this means that the design BER must be chosen lower
than that required by the system, the design achieves balancing in
the loading between the different spatial channels. Furthermore,
notice that as ρr = ρt approaches one, the approximations improve.
This is expected as large ρr = ρt means that almost all power and
bits are allocated to a single channel and thus there is less inter-
ference and error propagation between the spatial channels and the
approximation ignoring these effects improves.
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Figure 2: Approximation performance, nt = 6, nr = 3, 20 dB SNR.

6. CONCLUSIONS

Herein, a computationally efficient method for data rate optimiza-
tion of a spatially multiplexed MIMO communication systems with
covariance feedback is proposed and evaluated. Results from simu-
lations indicate that the algorithm provides gains compared to pure

diversity techniques and methods that simply maximize received
SNR. Also, for cases where the elements of the channel matrix are
perfectly correlated or uncorrelated, the scheme converges to well
known solutions, providing a seamless transition between beam-
forming techniques and transmission schemes used over unknown
independent Rayleigh fading channels.
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