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ABSTRACT
Medical Telesurvey needs human operator assistance by
smart information systems. Usual sound classification may
be applied to medical monitoring by use of microphones in
patient’s habitation. Detection is the first step of our sound
analysis system and is necessary to extract the significant
sounds before initiating the classification step. This paper
proposes a detection method using transient models, based
upon dyadic trees of wavelet coefficients to insure short de-
tection delay. The classification stage uses a Gaussian Mix-
ture Model classifier with classical acoustical parameters
like MFCC. Detection and classification stages are evalu-
ated in experimental recorded noise condition which is non-
stationary and more aggressive than simulated white noise
and fits with our application. Wavelet filtering methods are
proposed to enhance performances in low signal to noise ra-
tios.

1. INTRODUCTION

In this paper a sound detection/classification method is pre-
sented. This method has been developed as part of a medi-
cal telesurvey system intended for home hospitalization. The
aim of this system is to detect a distress situation of the pa-
tient using sound analysis. In case of distress a medical cen-
ter is automatically called with the aim in view to give assis-
tance to the patient. The decision of call is taken by a data
fusion system from smart sensors and particularly a sound
system as explained in [1].

Each sound produced in the apartment is characteristic
of:
• a patient’s activity: the patient is locking the door, or he

is walking in the bedroom,
• the patient’s physiology: he his having a cough,
• a possible distress situation for the patient: a scream or a

glass breaking are suddenly appearing.
If the system has a good ability of classification for such
sounds, it will be feasible to know if the patient is needing
help. Several usual sound classes needed for this applica-
tion have been defined and a corpus has been recorded in our
laboratory.

Before sound classification, it is necessary in a first step
to establish the start and the stop time of the sound to clas-
sify in the environmental noise. The precision of this 2 times

This work is a part of the DESDHIS-ACI ”Technologies for Health”
project of the French Research Ministry. This project is a collaboration
between the Clips (“Communication Langagière et Interaction Personne-
Système”) laboratory, in charge of the sound analysis, and the TIMC (“Tech-
niques de l’Imagerie, de la Modélisation et de la Cognition”) laboratory,
charged with the medical sensors analysis and data fusion.

must be sufficient to allow the classification step good per-
formances. In the context of audio signal encoding the in-
put signal can be decomposed into “tonal”, “transient” and
“stochastic” components as described by Daudet in [2][5];
our problem is restricted to transient detection for which
large wavelet coefficients are more easily interpreted as tran-
sients.

Proposed methods are based on trees of wavelet coeffi-
cients, during transition time upper wavelet coefficients be-
ing affected: a significant coefficient is likely coming with
additional significant coefficients at the same time location
and lower scale level [3]. In this paper, two methods based
on wavelet tree detection are presented, the obtained results
are compared. We also present the results of sound classifi-
cation method in noisy conditions.

2. SOUND EXTRACTION IN NOISY
ENVIRONMENT

2.1 Noise and sounds

As no everyday life sound database was available in the sci-
entific area, we have recorded a sound corpus. This cor-
pus contains recordings made in the CLIPS laboratory, files
of ”Sound Scene Database in Real Acoustical Environment”
(RCWP Japan) and files from a commercial CD: door slap,
chair, step, electric shaver, hairdryer, door lock, dishes, glass
breaking, object fall, screams, water, ringing, etc. The cor-
pus contains 20 types of sounds with 10 to 300 repetitions
per type. The test signal database has a duration of 3 hours
and consists of 2376 files.

The sound classes of our corpus are described in the fol-
lowing table; the number of frames for each class is given
too. Each frame has a duration of 16ms (256 samples at 16
kHz). Signal duration varies in a 500:1 ratio. Fast variations
of the signal are related to short duration parts of the signal
(some milliseconds).

Sound Class Number of Frames Duration
(Entire corpus) (Each Sound)

Door Slap 47 398 375 ms
Breaking Glasses 9 338 15 ms-7.5 s
Ringing Phone 59 188 35 ms-10 s
Step Sound 3 648 1.4-5 s
Scream 17 509 0.37-5.8 s
Dishes Sounds 7943 125 ms-1.35 s
Door Lock 605 24 ms-117 ms

Table 1: Sound classes
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Figure 1: Tree of wavelet coefficients for N=2048 sample
window (tree depth of 3 levels)

Two types of noise have been considered, the noise reg-
istered inside an experimental apartment1, which is named
HIS noise, and stationary white noise. HIS noise is a result
of all noises in the building, he is a transient noise similar
to usual sounds to detect, but transients are partially reduced
by propagation inside the structure of the building. This kind
of noise is not a stationary noise. First investigations showed
that, unlike Dufaux studies [4], white noise performances are
not sufficient to insure satisfactory performances in our ac-
tual case.

For this reason white noise study will only be used for
literature result comparison, like in [4]. Evaluation of the
algorithms has been made at 4 signal to noise ratios: 0, +10,
+20 and +40dB.

2.2 Transients modeling

Methods based on wavelet transforms are often used for sin-
gularity characterization and transient detection, because of
the compact support of wavelets in conjunction of the dyadic
properties of these transforms. These two properties are al-
lowing the analysis of reduced parts of the processing win-
dow. The figure 1 shows a wavelet tree with 3 level depth
beginning at the highest hierarchical level. Each node is cor-
responding to a wavelet whose support is drawn in frequency
and time domain. For wavelets of highest level the support
in time is twice the sampling period.

For our purpose it is not necessary to determine the full
tree corresponding to the transient, we limit our study to
these 3 levels and we characterize each tree by his energy
e, the sum of the energy of all nodes. We have chosen
Daubechies wavelets ψ with 6 vanishing moments to com-
pute DWT on 2048 sample windows (128 ms), the wavelet
base is generated by translation and dilatation of the mother
wavelet ψ [8]:

{
ψ j,n(t) =

1√
2 j

ψ
(

t −2 jn
2 j

)}

( j,n)∈ �
(1)

As we consider the energy e of the tree, the non significant
nodes are implicitly not taken into account because they are
negligible in the summation. With this approach the tree is
not pruned and we don’t eliminate nodes at scale 211 if their
mother node at scale 210 is not significant, but this might not
be very harmful because of the low depth of the tree.

A signal of chair falling with HIS noise is drawn on
the bottom sub-figure of figure 2, the sound appears at time

1The HIS apartment is located in the TIMC laboratory building

 0

0 10 20

M
ag

ni
tu

de

Time (0-25s)

Chair fall in HIS noise

Sound wave

 0
0 10 20

E
ne

rg
y

Tree Energy (3 highest level summation)

Figure 2: Sound signal and Tree Energy

t = 10s. The top sub-figure displays tree energy evolution
across the time. Energy corresponding to useful signal is
surrounded by isolated noise pulses which are sometimes
greater but useful signal is associated with numerous adja-
cent trees and in this way could be detected.

2.3 Proposed detection algorithms

2.3.1 Several tree mean

DWT is calculated on N = 2048 sample windows (128ms) as
shown in figure 3. From this DWT the energy e of each tree
is obtained by time translation (500µs) across the transform.
The means emeans of the 64 last values is calculated at each
translation step in order to suppress noise influence. Since
16 kHz sampling rate, corresponding frame width is 32 ms.
A transient is characterized by a large increase of emeans.

The detection th threshold is adaptive: th = κ + 1.2 ·
µemeans , with µemeans referring to the mean of the last values
of emeans and κ to an adjusting parameter. The coefficient 1.2
was introduced because of remaining oscillations on emeans.

2.3.2 Threshold on the standard deviation

This algorithm (see flowchart in figure 3) is computing the
DWT of consecutive N = 2048 sample windows. From this
DWT the energy e of each tree is obtained as above by time
translation across the transform. A median filter is applied to
eliminate isolated trees which are only relevant of noise, the

Detection Method SNR HIS noise White noise

Several tree mean 0dB 6.7% 5.9%
>+10dB 0% 0%

Standard deviation 0dB 3% 22.7%
>+10dB 0% 0%

Filtered energy 0dB 71.3% 19.2%
(conditioning +10dB 45.2% 6.1%
median filter) +20dB 7.5% 6.1%

+40dB 6.1% 6.1%

Table 2: Detection EER, 198 tests at each SNR level (99
noised sounds, 99 pure noise)
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Figure 3: Detection algorithms using energy tree evaluation

Method 0dB +10dB +20dB +40dB

Sev. tree mean 23.6ms 13.9ms 9ms 5.5ms
Standard dev. 30.6ms 13.4ms 11.5ms 8.4ms

Table 3: Mean of detection delay for sound duration shorter
than 2s for HIS noise (78 tests at each SNR level)

width of the filter is 3. The standard deviation σ of the last
640 filtered energy values is calculated at each translation
step: a high increase of the standard deviation is significant
of a transient.

The detection is achieved by increase beyond an adaptive
threshold th = κ + µsigma, with µsigma referring to the mean
of the last values of σ and κ to an adjusting parameter.

2.4 Detection results

Evaluation of each algorithm was done from COR curves
giving missed detection rate (MDR) as function of false
detection rate (FDR), the Equal Error Rate (EER) being
achieved when MDR=FDR. Results for the two algorithms
and for the conditioning median filtered energy described in
[4] are given in table 2. Best results for HIS noise at 0dB
SNR are obtained for ”Standard deviation” (3%) and ”Sev-
eral tree mean” (6.7%), in the case of white noise ”Several
tree mean” (5.9%) is the best.

In order to insure best classification results, a short detec-
tion delay is very important. Delay means for the 2 proposed
methods are given in table 3 at each SNR in the previous con-
ditions (threshold choice in order to obtain Equal Error con-
ditions) for sounds of short duration for which it is important
to extract the most useful part of the signal. Best values at
0dB SNR are obtained for ”Several tree mean”: 23.6ms; if
SNR>+10dB they are below 14ms for the 2 methods. An
additional part of signal may be added without critical inci-
dence by deciding that signal is beginning 20 ms before de-
tection time: it is needed neither to cut signal nor to transmit
additional noise frames to the classification stage.

3. SOUND CLASSIFICATION

We have used a Gaussian Mixture Model (GMM) method in
order to classify the sounds [9]. There are other possibility
for the classification: HMM, Bayesian method, etc. GMM
has been chosen because with other methods similar results
has been obtained, although they are more complex.

3.1 Acoustical parameters

The first step of sound classification is acoustical parameters
extraction. Acoustical parameters are a synthetic represen-
tation of time signal. Acoustical parameters classically used
in speech/speaker recognition are: MFCC(Mel Frequencies
Cepstral Coefficients), LFCC (Linear Frequencies Cepstral
Coefficients), LPC(Linear Predictive Coefficients). Acousti-
cal parameters used in speech/music/noise segmentation are :
ZCR (zero crossing rate), RF (roll-off point), centroı̈d. Zero
Crossing Rate (ZCR) is the number of crossings on time-
domain through zero-voltage within an analysis frame. Roll-
off Point (RF) is the frequency which is above 95% of the
power spectrum. Centroı̈d represents the balancing point of
the spectral power distribution within a frame.

3.2 GMM

The classification with a GMM method suppose that the
acoustical parameters repartition for a sound class may be
modeled with a sum of Gaussians. This method evolves in
two steps: a training step and a classification step. In the
training step for each sound class the Gaussian model is es-
timated. The training step start with a K-Means algorithms
followed by EM algorithm(Expectation-Maximization) in 20
steps. In the classification step for each acoustical vector is
calculated a likelihood for each sound class. The global like-
lihood for each class is the geometrical average of all acous-
tical vector likelihood. The signal belongs to the sound class
for which likelihood is maximum.

3.2.1 Model Selection

The BIC (Bayesian Information Criterion) criterion is used
in this paper in order to determinate the optimal number of
Gaussians [10]. BIC criterion select the model trough the
maximization of integrated likelihood: BICm,K = −2.Lm,K +

νm,K ln(n). Where Lm,K is logarithmic maximum of likeli-

hood, equal to log f (x |m,K, θ̂) ( f is integrated likelihood),
m is the model and K the component number of model, νm,K
is the number of free parameters of model m and n is the
number of frames. The minimum value of BIC indicate the
best model.

The BIC criterion has been calculated for the sound class
with the smallest number of files, for 2, 4, 5 and 8 Gaussians.
The results of the table 4 are obtained for 16 MFCC parame-
ters. Looking at the results, a number of Gaussians between
3 and 5 seem to correspond to the best sound modeling. We
have decided to use 4 Gaussians.

No. of 2 3 4 5 8Gaussians

BIC 11043 10752 10743 10757 13373

Table 4: BIC for 2, 3, 4, 5 et 8 Gaussians (1577 tests)
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SNR [dB]
Filtering 0 10 20 40 > 55

Without 48.3 27.2 13.1 11.1 10.1

With F1 40 20.5 14.6 10.4 10

With F2 40.4 20.9 15.1 10.7 10

Table 5: ECR for 16MFCC+ZCR+RF+Centroı̈d in the HIS
noise presence (1577 tests for each SNR)

3.3 Noise attenuation

In order to increase the classification efficiency, wavelet fil-
tering is applied before sound classification. The Wavelet
Transform is more adapted to analyze and process impulsive
signals than Fourier Transform which is adapted to periodical
signals.

Two methods are tested on our test set. The general steps
of the method are : DWT calculation on 256 samples window
(9 wavelet coefficients), the application of thresholds on the
DWT Coefficients, DWT inverse calculation.

Thresholds are applied to the absolute value of each
Wavelet Transform coefficients. For the first method (F1)
values under the threshold are cleared and other values are
unmodified. For the second method (F2) values under the
threshold are cleared; for other values a subtraction of esti-
mated noise value is made (Bi

max/10). Threshold values for
each DWT Coefficient are:





Ti = 1.2∗Bi
max for i = 1 . . .4

Ti = 0.9∗Bi
max for i = 5

Ti = 0 for i = 6 . . .9

where Ti is the threshold applied to coefficient i of DWT
and Bi

max the maximal value of coefficient i of DWT for the
noise. The value Bi

max is estimated on the first 100ms of
signal which are considered to contain only environmental
noise.

This filtering threshold choice results from a study of the
HIS noise and sounds. The sounds contain less useful infor-
mation in the first five DWT coefficients, whereas in the case
of HIS noise almost all information is located in low hierar-
chical level coefficients of DWT.

3.4 Classification results in noisy conditions

The sound classification is validated on the test set with 7
classes (the pure sounds and the sounds mixed with HIS
noise at 0 dB, 10 dB, 20 dB and 40 dB of SNR). The sound
classification performances are evaluated through the error
classification rate (ECR) which represent the ratio between
the bad classified sounds and the total number of sounds to
be classified.

In the table 5 the classification results for 16 MFCC
acoustical parameters coupled with zero crossing rate, Roll-
off point and centroı̈d are presented. We can observe that
for ”pure” sounds we have 10% of classification error. In the
noise conditions, the wavelet filtering give a gain, in absolute,
of 8% for the ECR. The two methods of wavelet filtering has
approximately same results.

4. CONCLUSION

We have presented detection and classification methods al-
lowing us to detect and classify a sound event recorded in
nursed home. Proposed detection method are resulting in low
delay after signal beginning -typically 14 ms- so that link to
classification step is not disturbed.

Detection is error-less for 10dB SNR and upper and error
classification rate of 20% or better are reached in the same
noise conditions; according to these two results we can con-
clude that this detection/classification system may be used
under realistic conditions with moderate noise.

We are working to apply proposed detection techniques
to speech recognition in order to allow call for help by the
patient in our medical application.

These identification methods may have possible applica-
tions in multimedia classification or security sound surveil-
lance.
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