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ABSTRACT

In this paper we present a novel method for scaling of multi-
stage interpolators. When a signal is upsampled it becomes
Cyclo-Wide-Sense Stationary (CWSS) which prevents the
use of common algorithms for scaling. Our method is based
on multirate identities and polyphase decomposition and
avoids these problems.

1. INTRODUCTION

When designing systems for digital signal processing we
sometimes need to implement a device that changes the sam-
pling frequency. A straightforward solution would be to first
reconstruct the analog signal and then sample it again, how-
ever, this is usually far too costly and leads to low precision.
Methods for performing this operation in the digital domain
are, nowadays, well known. It can be shown that it is advan-
tageous [1] from a complexity point of view, to do the inter-
polation in multiple stages. This, however, leads to a couple
of design problems that have not yet been thoroughly inves-
tigated. In this paper we will focus on one of those problems,
namely scaling of multistage interpolators.

Scaling is needed to avoid or reduce the impact of over-
flow. The idea behind scaling is to introduce scaling fac-
tors prior to multiplications and later scale the output with
the inverse. Scaling in single-rate filters has been treated in
many publications, see for example [2]. Different strategies
for finding the scaling factors exist, for example safe scaling
and scaling using the L2-norm [2]. In the case of cascaded
filters, each filter has to be scaled properly. Unfortunately,
problems arise in interpolators because the stationarity is lost
when upsamplers are used. The statistical properties of sig-
nals in multirate systems have been treated in [3], however
the results are rather complicated and cumbersome to use in
practice. In this paper we present a more practical method to
scale the filters in multistage interpolators.

The outline of this paper is as follows. First, the concept
of scaling in single-rate filters will be recapitulated followed
by an introduction to interpolators. Then, we will present a
novel method for scaling of multistage interpolators. Finally,
we will give some concluding remarks.

2. SCALING

Interpolators contain filters and therefore we will recapitulate
scaling in such structures.

The main operations performed in digital filters are mul-
tiplication and addition. The problem with these is that their
result might overflow and hence cause distortion. If an arith-
metic system like two’s complement is used, it does not mat-
ter if the intermediate additions overflow as long as the over-

all calculation is within the allowed range. Multiplications do
not have this property and therefore, the inputs to the multi-
plicators must be scaled.

To prevent overflow in a certain critical node v(n) we can
scale the input signal with a factor c and the output with 1/c,
see Fig. 1. The scaling must be done in such a way that the
transfer function of the system is not altered, except possibly
for a change in overall gain.

N1 N2

x(n) y(n)c

c

1/c α

v(n)
Critical overflow node

1/c

Figure 1: Scaling of the critical node v(n) with a factor c.

To find the factor c, different strategies can be used. One
is to simply forbid all overflows, which is called safe scaling.
However, safe scaling is rather pessimistic and only suitable
for FIR-filters with short impulse response length which have
a high probability of overflow. Another strategy more suit-
able for longer filters with wideband input signals is based
on the so called L2-norm. The L2-norm of a signal x(n) with
frequency function X(e jωT ) is defined as

||X ||2 =
√

1
2π

∫ π

−π
|X(e jωT )|2dωT =

√
∞

∑
n=−∞

|x(n)|2 (1)

and is the root-mean-squared (rms) value of the signal.
L2-norm scaling is done as follows. First, calculate

||Fi||2, which is the L2-norm of the frequency response
Fi(e jωT ) from the input to the critical node. The input to
the system is then multiplied by c = 1/||Fi||2 to reduce the
risk of overflow in the critical node. If the output signal is
fed back it would accordingly have to be multiplied by 1/c
for the overall system to be unaffected. In the situation where
the output is not fed back, we do not need the multiplication
with 1/c. Instead we can place a scaling constant at the final
output to achieve the desired amplification.

The use of L2-norm scaling for white-noise input signals
ensures that the variance at the critical node equals that of the
input. In particular, when the input is Gaussian with variance
σ2

x , the critical node is also Gaussian with the same variance.
This implies that the probability of overflow at the critical
node is the same as the probability of overflow at the input.
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This is the reason why L2-norm scaling is commonly used for
scaling white-noise inputs and also general wide-band input
signals, both random and deterministic ones.

One requirement for the statement above to hold is that
the input is Wide-Sense Stationary (WSS). A random process
X(n) is said to be WSS if its mean-value is constant and its
autocorrelation function rxx(n,k) = E[X(n)X∗(n− k)] only
depends on k. An important property of a filter that is linear
and time invariant (LTI) is that the output will still be WSS if
the input is WSS [3]

In the next subsection we will show how scaling can be
extended to cascaded FIR filters.

2.1 Scaling of Cascaded FIR Filters

A digital filter can usually be split into several cascaded fil-
ters by factorization of the transfer function. Such a situation
is depicted in Fig. 2. As we stated before, scaling must be
used to prevent overflow within the filters and therefore we
have introduced a scaling constant ci in front of each filter.
We assume that the filters are FIR and realized in a direct-
form structure, which limits the need for scaling constants to
the output of each filter. The constant c1 is used to scale the

y(n)x(n) c1H1(z) c2H2(z) c3H3(z)

Figure 2: Scaling of cascaded direct-form FIR filters.

output of H1(z). Then, when c2 is to be calculated, we need
to take c1 into account since when the signal reaches c2 it has
already been scaled by c1. The constant c3 is used to scale
the output from H3(z) and must take c1 and c2 into account.
Let

F1 = H1 F2 = H1H2 F3 = H1H2H3 (2)

and thus the expressions used to calculate ci are equal to

c1 = 1
||F1||2 c2 = 1/c1

||F2||2 c3 = (1/c1)(1/c2)
||F3||2 (3)

In practice the scaling factors can be propagated into the fil-
ters and be combined with the multiplying constants within
the filters. In Section 4 scaling will be extended to multistage
interpolators.

3. INTERPOLATORS

To increase the sampling frequency of a signal, interpolation
is used. Interpolation usually consists of two operations, up-
sampling and filtering. We will start this section by recapit-
ulating the structure of an interpolator and, in particular, the
polyphase representation that we will use later.

3.1 Upsampling and Filtering

The upsampling operation inserts zeros between the samples.
If a signal is upsampled by a factor L it can be written as

y(m) =
{

x
(

m
L

)
if m = 0,±L,±2L, ...

0 otherwise
(4)

The upsampling operation scales the frequency axis and
since the spectrum of a digital signal is periodic the spectrum
will contain L− 1 copies of the original spectrum. These

y(m)

Lfsamplefsample

x(n) H(z)L

Figure 3: Interpolator consisting of an upsampler and a filter.

copies are unwanted and therefore a lowpass or interpolation
filter is placed after the upsampler, see Fig. 3.

Unfortunately, stationarity will not be preserved when a
signal is upsampled. It can be shown that a WSS signal be-
comes Cyclo-WSS (CWSS) if it is upsampled. A random
process is said to be CWSS with a period of L if [3]

E[X(n)] = E[X(n+ kL)], ∀n, ∀k
rXX (n,k) = rXX (n+L,k), ∀n, ∀k

The problem with signals that are CWSS, in this situation,
is that the L2-norm no longer can be used directly, because
different samples have different statistical properties. For ex-
ample x(2n) may be more likely to overflow than x(2n + 1).
One way to analyze cyclo-stationary signals is to use bispec-
trum masks [4] which are based on two-dimensional Fourier
transforms. In this paper we use a different and simpler ap-
proach; we will use the identity in Fig. 4 and polyphase rep-
resentation.

y(m)x(n) LH0(z)y(m)x(n) L H0(zL)

Figure 4: Identity for filters and upsamplers [5].

3.2 Polyphase Representation

In practice the interpolator is using a polyphase decomposed
structure. We will now present some results that leads to the
polyphase representation.

By using so called polyphase representation the transfer
function H(z) can be written as a sum of downsampled and
delayed transfer functions,

H(z) =
L−1

∑
i=0

z−iHi(zL) (5)

For an FIR filter it is always easy to rewrite H(z) in the
polyphase form of (5). Not all IIR filters can easily be rewrit-
ten in polyphase form, however, in this paper we will only
treat FIR filters.

If (5) is used together with the multirate identity in Fig. 4
the interpolator can be realized as in Fig. 5. The advantage
with this structure is that the sampling frequency in each
branch is lower than in the original structure.

The polyphase structure will be used in Section 4 to trans-
form each stage in the multistage interpolator into structures
that can more easily be used for scaling.

3.3 Multistage Interpolators

The complexity needed to perform interpolation can often be
reduced by doing the interpolation in multiple steps, so called
multistage interpolation [5]. In Fig. 6 a multistage interpola-
tor is shown. The sampling frequency is increased stepwise.
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Figure 5: Polyphase interpolator.

y(m)

Lfsamplefsample

x(n) H1(z) H2(z) HP(z)LPL2L1

Figure 6: Multistage interpolator.

4. PROPOSED METHOD FOR SCALING OF
MULTISTAGE INTERPOLATORS

This section introduces the proposed method for scaling
of multistage interpolators. As discussed in Section 3, the
dilemma is that the output of the upsampler is not WSS but
CWSS. This means that different output samples have differ-
ent statistical properties. In the single-stage interpolator case,
it means in particular that the variance at the output of the in-
terpolator is time-varying and periodic with the period L. To
scale the output of the interpolator, we therefore divide the
output into L subsequences which are WSS and hence can be
scaled using the principles explained in Section 2 for single-
rate filters. In the multistage interpolator case, we use the
same idea but applied to each subinterpolator i as seen from
the input to the output of stage i. The WSS subsequences
are the outputs of the corresponding polyphase components,
which are found by making use of the identity in Fig. 4 and
polyphase decomposition. Details of the proposed method
follows below.

A single-stage interpolator can be scaled using polyphase
representation as follows. In Fig. 5 we see that each branch
in the polyphase structure consists of a single rate filter.
By calculating the L2-norm for each branch Hi(z) we can
find the scaling constants for the filters. All the filters must
use the same scaling constant, otherwise the amplification at
the output would become time-varying. Choose the largest
value max{||Hi||2} and let the scaling factor ci to be equal to
1/max{||Hi||2}. For some of the polyphase branches it will
inevitably be overly pessimistic.1

Consider next the multistage case. We will illustrate the
method through an example. A three-stage interpolator that
increases the sampling frequency 24 times can be constructed
as in Fig. 7. In practice the interpolator in Fig. 7 is usually

y(m)

24fsamplefsample

x(n) H1(z) H2(z)32 H3(z)4

Figure 7: Multistage interpolator example.

1Another possible solution could be to calculate the mean of the L2-
norms and use its inverse as the scaling factor, but that will not be considered
in this paper.

implemented as in Fig. 8, because of the parallel structure
which lowers the overall computation burden. We will use
a double index, Hi, j, to denote that the polyphase branch j
orginates from filter i. Notice the similarities between Fig.

y(m)

24fsample
fsample

x(n)
c1H1,0(z)

c1H1,1(z)

c2H2,0(z)

c2H2,1(z)

c2H2,2(z)

c3H3,0(z)

c3H3,1(z)

c3H3,2(z)

c3H3,3(z)

Figure 8: Multistage interpolator realized using polyphase
representation.

2 and Fig. 8. The situation is the same, we need to find the
constants ci that prevent overflow at the output of each stage.

The method is general, but as an illustration we assume
that we have filters with the following transfer functions

H1(z) =
1+2z−1 + z−2

4
(6)

H2(z) =
1+ z−1 + z−2

3
(7)

H3(z) =
1+ z−1 + z−2 + z−3

4
(8)

Step 1: We now use polyphase representation to rewrite
the first upsampler and filter F1(z) = H1(z) as in Fig. 9. The

y(m)

24fsample
fsample

x(n)
H2(z)3 H3(z)4

||F1,0||2

||F1,1||2

F1,0(z)

F1,1(z)

Figure 9: Interpolator scaling - step 1.

transfer functions for the polyphase branches can, using (5),
be found to be

F1,0(z) = 1+z−1

4 F1,1(z) = 1
2

(9)

We now calculate the L2-norm for these two transfer func-
tions.

||F1,0||2 = 1
2
√

2
||F1,1||2 = 1

2 (10)

Now c1 is calculated as

c1 =
1

max{||F1,0||2, ||F1,1||2} =
1

1/2
= 2 (11)

Step 2: Now use the identity in Fig. 4 to switch places be-
tween H1(z) and the upsampler by three in Fig. 7. The result
is shown in Fig. 10.

y(m)

24fsamplefsample

x(n) H3(z)6 H1(z3)H2(z) 4

F2(z)

Figure 10: Interpolator scaling - step 2a.

Let
F2(z) = H1(z3)H2(z) (12)
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F2,4(z)
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Figure 11: Polyphase representation - step 2b.

and divide the upsampler by six and F2(z) in Fig. 10 into six
polyphase branches as in Fig. 11. The transfer functions for
each branch becomes

F2,{0...2}(z) = 1+z−1

12 F2,{3...5}(z) = 1
6

(13)

As before, we calculate the L2-norm for each branch

||F2,{0..2}||2 = 1
6
√

2
||F2,{3...5}||2 = 1

6 (14)

and select the largest one. The constant c2 then becomes
equal to

c2 =
1/c1

max{||F2,{0...5}||}
=

1/2
1/6

= 3. (15)

Step 3: Use the multirate identity to switch places be-
tween H1(z3)H2(z) and the upsampler by four. The result is
Fig. 12.

y(m)

24fsamplefsample

x(n) 24 H1(z12)H2(z4)H3(z)

F3(z)

Figure 12: Interpolator scaling - step 3a.

Let
F3(z) = H1(z12)H2(z4)H3(z) (16)

and divide F3(z) and the upsampler by 24 into 24 polyphase
branches as in Fig. 13. The transfer functions can be found

F3,0(z)

x(n)

fsample

F3,1(z)

F3,23(z)

24fsample

y(m)

||F3,0||2

||F3,23||2

Figure 13: Polyphase representation - step 3b.

to be

F3,{0...11}(z) = 1+z−1

24 F3,{12...23}(z) = 1
12

(17)

and the L2-norms

||F3,{0...11}||2 = 1
12
√

2
||F3,{12...23}||2 = 1

12 (18)

Finally, we calculate

c3 =
(1/c1)(1/c2)

max{||F3,{0...23}||}
=

(1/2)(1/3)
1/12

= 2 (19)

Using the constants found we can now implement the fil-
ter as in Fig. 8. The method can be summarized in the fol-
lowing algorithm. We refer to Fig. 6 for a definition of the
variables.
Algorithm Scaling of multistage interpolators
1. F1(z)←H1(z)
2. c0 ←1
3. for i←1 to number of filters
4. Split Fi(z) and the leftmost upsampler by Li into

Li polyphase branches with transfer functions
Fi,{0...Li−1}(z).

5. Calculate ||Fi,{0...Li−1}||2.
6. ci ←Πi−1

j=0(1/c j)/max{||Fi,{0...Li−1}||2}.
7. if i = number of filters
8. then
9. stop
10. else
11. Exchange places for Fi(z) and the upsam-

pler by Li+1
12. Fi+1(z)←Fi(zLi+1)Hi+1(z)
13. Combine the two leftmost upsamplers

into a new upsampler

5. CONCLUDING REMARKS

We have presented a method for scaling multistage interpo-
lators. Compared to earlier published methods it is easier
to use in a practical situation. This method is, in its current
form, restricted to multistage interpolators using direct-form
FIR filters. This is because such filters only need scaling at
their inputs. The method can be adopted to the general case
where the filters also need scaling internally, eg. IIR filters.

Techniques similar to the one presented in this paper
could also be used for roundoff noise calculations. Further,
it could be used for decimators, however in that case the sta-
tionarity is preserved which simplifies the situation. An ex-
tension to interpolators or decimators with rational factors is
possible given certain restrictions, but that will be treated in
another paper.
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