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ABSTRACT

This paper considers the implementation of a Fast Re-
cursive Least Squares, complex adaptive Decision Feed-
back channel equalizer, using real valued arithmetic. An
efficient adaptive scheme is established based on novel
three-terms recursions for the time updating of the per-
tinent parameters, resulting in significant computational
savings. The proposed algorithm is implemented using
real valued arithmetic only, whilst reducing the number
of the required real valued multiplication operations by
23%, at the expense of a marginal 1.5% increase in the
number of the real valued additions.

1. INTRODUCTION

The design of efficient adaptive Decision Feedback
equalizers has been the subject of major research and
development, for high-speed digital communication over
satellite, microwave, mobile or unshielded twisted pair
channels, for DTV receivers etc., [4]. Complex valued
signals are encountered in most of of adaptive equaliza-
tion applications. The fast complex valued multiplica-
tion method, has been adopted for the design of efficient
digital signal processing algorithms, including digital fil-
tering and adaptive filtering. In the context of VLSI
signal processing, the fast complex valued multiplication
method has been introduced as an Algorithmic Strength
Reduction (SR) transform, and it has been successfully
applied for the design of low power, high speed adaptive
filters and equalizers, [1],[3],[5].

The output of symbol spaced Decision Feedback
adaptive equalizer is defined as, [4],

y(n) = bj(n-Nuy(n)+al(n-1) (1)
I(n) = Dly(n)] (2)

Here, u(n) is a complex valued input signal to the adap-
tive equalizer and I(n) is the output of the decision de-
vice. Vectors b, and a, carry the coefficients of the
feedforward and the feedback part of the DE, respec-
tively. Vectors up(n) and I;(n — 1) carry the input data
associated to the linear regression (subscripts p and ¢
denote the vector size). Eq. (1) is written compactly as

y(n) = cpxm(n) (3)
cm = [b, a,]" Xm(n) = [ug, (n) I (n —1)]" (4)

Vectors ¢, and x,,(n) have dimensions m x 1, where
m = p+ q. The DF equalizer is designed as

Cm(n): min <Z )\”_kefn*(k)efn(k)> (5)

k=0

e

m (k) = z(k) — e (n)%m (k). (6)

Here, z(k) denotes the desired response signal. During
the training period, z(k) equals to a delayed version of
a known transmitted signal, §(n), i.e., z(k) = §(n — D),
while during the decision directed mode, z(k) is set equal
to the detected symbol, i.e., z(k) = I(k). 0 << A< 1lis
a parameter that controls the size of the exponentially
fading memory of the adaptation mechanism.

The RLS algorithm provides an adaptive method for
the solution of the normal equations, resulting by mini-
mization of (6). Indeed,

en(n) = (2(n) = cp(n = 1)xm(n)) [am(n), (7)
am(n) = 1+ wp(n)xm(n), (8)
cm(n) = cm(n—1)+wn(n)e;(n). (9)

Parameter w,,(n) that appears in the above equations,
is the so called Kalman gain vector, defined as, [2],[7],

wn(n) = AR (n — 1)x,,(n). (10)

According to the RLS algorithm, the inverse matrix
R, !}(n — 1) can be updated using an O(m?) recursive
scheme. Fast RLS algorithms go a step further, using
fast O(m) adaptive schemes for the time update of the
Kalman gain vector, bypassing the need of the inverse
matrix adaptation. The key point in the development of
fast RLS algorithms is the proper utilization of the shift
invariance property of the data matrix, as well as the use
of a set of permutation matrices for the reorganization
of the block data vectors, [2],[6],[7].

Direct application of a fast complex valued multipli-
cation method to the original FRLS scheme, where each
individual complex multiplication is performed using a
fast scheme, can reduce the number of the required real
multiplications by 23%, at the expense of a 70% increase
in the required number of additions. To keep the over-
head due to the extra additions low, both the input and
the desired response signals, as well as all variables as-
sociated with the FRLS algorithm, are treated as pairs
of real signals, and operations are re-organized on a real
arithmetic basis. Auxiliary signals and filter parameters
are introduced, which correspond to the generic signal
transformation sg(n) = sg(n), where sg(n) and sg(n)
represent the real and the imaginary part of the com-
plex valued signal s(n), respectively. The algorithmic
strength reduction technique is subsequently applied to
the transformed FRLS algorithm. In this way, novel
real valued three-terms recursions are derived for the ef-
ficient time update of the FRLS parameters, resulting
in significant computational savings.
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2. THE DF SR FRLS ADAPTIVE
EQUALIZER

Complex valued arithmetic is required for implementa-
tion of the DF FRLS algorithm when the input signals
and/or the filter model are represented by complex val-
ued variables. Complex valued addition is realized by a
set of two real valued additions, while complex valued
multiplication can be realized by the classic method,
that requires four real valued multiplications and two
real valued additions. Alternatively, the fast complex
valued multiplication method can be applied, where the
inherent dependencies of the partial products and sums,
are utilized for the reduction of the number of real val-
ued multiplication operations, at the expense of some
extra real valued additions, [5]. In this case, three real
valued multiplications and five real valued additions, are
required. Among others, two possible implementations
of a fast complex valued multiplication of two complex
valued numbers a + yb and ¢ + jd, are described by

(b(c—d) + (a — b)c)
(—(a+b)d+alc+d)+y

+7(a(c+d) — (a—Db)e) (11)
(b(c—d) + (a+b)d). (12)

The complex regressor vector is written as x,,(n) =
x® (n) + yx3 (n). In a similar way, the ﬁlter coefficients

complex vector is expressed as ¢, (n) = cX (n)+jc> (n).
Then, y(n) is expanded as

wt(n = 1)xp (n) + €™ (n — 1)x;5,(n)

= c
+ (e (n = 1)x5(n) — ey (n — 1)xp(n)) .

Let us consider a set of auxiliary filter output signals
y(n) =yn(n) +ys(n), §(n) =yx(n) —ys(n). (13)
Variables y(n) and §(n) are estimated as
yn) =
y(n) =

Here, vectors €y, (n) and €&,,(n) are transformed versions
of the original filter coefficient vector ¢, (n), defined as

Cm(n) = ¢y, (n) + ¢, (n), Em(n) = 5y (n) — e, (n). (16)

Consider the complex variable Y (n) = §(n) + yy(n).
It is computed using eqs. (14) and (15) as

m () + 7%, (n)) -

Application of the SR transform, eq. (11), to the above
equation, results in

y(n) =

Y(n) = (€n(n—1) + j€m(n—1))" (x

eh (n = 1)Xm(n) — AC(n)"xN(n),  (17)

§(n) = &, (1 — D&m(n) + ACu () xE (n).  (18)
where AC,,(n) = (¢ (n) — €p(n)). The auxiliary re-
gressors X, (n) and X,,(n) appeared above, are compat-
ible defined as

Xm (1) = X, (1) + X, (n), X (n) = %3, (n) = %, ().

Eqgs. (18) and (18) provide a cost effective way of com-
puting variables y(n) and g(n), using 3m real valued
multiplications and 4m — 1 real valued additions. On
the contrary, evaluation of either y(n) and §(n) using
egs. (14) and (15), or y(n) using eq. (13), requires 4m
real valued multiplications and 4m — 2 real valued ad-
ditions. Thus, working with the transformed variables
y(n) and g(n) instead of the original parameter y(n),
results in a significant reduction in the required num-
ber of real valued multiplications. If the SR technique
had been applied on an individual basis, for each com-
plex valued multiplication involved into the inner prod-
uct computation y(n) = ¢ (n—1)x,,(n), 3m real valued
multiplications and 7m real valued additions would have
been utilized.

Since y(n) and g(n) are estimated using the trans-
formed filters ¢,,(n) and €,,(n), it could be more effi-
cient, if these variables are updated directly, instead of
the updating the original c,,,(n). Recall that

<R () = R (n 1) + WP (n)ei(n) + w3 (n)esy (n),
cn(n) = ey (n — 1) = Wi (n)eg® (n) + Wi, (n)er;” (n)
If we insert the above recursions into eq. (16) we get
En (1) = En(n = 1) + (S (1) (0) = W ()53 ()
Em(n) = &m(n — 1) + (Wm (e (n) + Wm(n)eg> (n))

I3

Wm(n) = wh(n) + w3 (n), Wy, (n) =w

Consider the complex valued transformed coefficients
vector defined as C,,(n) = €, (n) — ¢, (n), which is
updated as

Cn(n) = C (n — )+
(Wi (n) = gWim(n (6’ — e’ () -

Application of the algorithmic strength reduction trans-
form, eq. (12), to the above equation, results in

Cn(n) =Cn(n — 1) + W (n)ép, (n) + AW ()3 (n),
Cn(n) =Cn(n—1) + W, (n)es,(n) + AW, (n)eS 5 (n).

The transformed

z(n) + y(n),
(n) + zg(n), amd

where AW, (n) = W,,(n) — wm(n)
filtering error variables has as €%, (n) =
é¢ (n) = Z(n) — §(n) where z(n) ZR
Z(n) = zn(n) — zg(n).

The computational complexity for estimating ¢, (n)
and €,,(n) is 3M real valued multiplications and 50
real valued additions. This figure should be compared
with the computational complexity of the original adap-
tive scheme implied by eq. (9) which is either 4rm real
valued multiplications and 4m real valued additions, or
3m real valued multiplications and 7m real valued addi-
tions, depending on the type of complex valued multi-
plication (i.e., classical, or fast elementwise) is adopted.

The proposed SR FRLS adaptive decision feedback
equalization algorithm is summarized in Table 1. The
SR transform has been applied to the forward and the
backward prediction parameters, that are involved in
the computational flow of the FRLS algorithm. Indeed,
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fast, three term recursions have been derived for the effi-
cient updating of the transformed forward and backward
prediction parameters. Efficient three term recursions
have also be derived for the updating of the transformed
Kalman gain vectors w,,(n) and w,,(n). Feedback sta-
bilization has been utilized in order to prevail numerical
divergence, [6].

The computational complexity of the original com-
plex valued FRLS adaptive DF equalizer, measured in
terms of real valued multiplications (MULSs) and addi-
tions (ADDs), is 60m MULs and 60m ADDs, where
m = p+ q. When fast multiplication is applied di-
rectly at a complex multiplier level, the correspond-
ing complexity reduces to 46m MULs and 102m ADDs.
On the contrary, the proposed efficient SR FLRS DF
adaptive equalizer requires 46m MULs and 61m ADDs.
Clearly, the proposed SR FRLS algorithm provide the
best low complexity compromise among all the com-
petitive schemes. The proposed scheme is suitable for
multiprocessor or VLSI ASIC implementation, achiev-
ing reduction of the required DSP units, or in the power
dissipation and the silicon area of the fabricated circuit.

3. SIMULATION RESULTS

A QPSK signalling is considered and the ISI is simulated
by passing the transmitted signal through a discrete-
time linear channel. At the receiver, a DF symbol
spaced equalizer is engaged in order to cancel the ISI
introduced by the channel, where p = 9 and ¢ = 5.
The channel impulse response is, [4], h? = [0.227e~7%0+
0.406e77%1+ 0.688¢77%2+ (.406e~ 792+ (.227e~794]7,
where the ¢; are random phases. The SNR is set equal
to 10 db. The stabilized SR FRLS adaptive algorithm is
employed for the channel equalization (A = 0.99). Feed-
back stabilization is employed, where the stabilization
parameters are all set equal to o = 0.5. The DF equal-
izer is initially trained using a known data sequence,
consisting of 100 data samples. After the training pe-
riod, it is set to a decision-directed mode. The unequal-
ized signal shown in Fig. la, while the equalized signal
(y(n)) is shown in Fig. 1b. The learning curve is de-
picted in Fig. 1lc. Finally, error feedback signals that
are used for algorithm stabilization are shown in Fig. 2.

4. CONCLUSIONS

A novel implementation of the FRLS DF adaptive equal-
izer has been presented. The proposed method results
in a reduced computational complexity adaptive scheme,
where all complex valued operations are replaced by real
valued counterparts. The proposed algorithm is imple-
mented using real valued arithmetic only, whilst reduc-
ing the number of the required real valued multiplica-
tions by 23%, at the expense of a marginal 1.5% increase
in the number of the real valued additions.
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