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ABSTRACT

The commonly used non-perceptual image quality mea-
sures are mainly derived from pixel-to-pixel differences and
closely relate to the mean squared error. Recently, there has
been an increased interest in the evaluation of neighborhood-
based differences between images, that take into account the
local (spatial) image context. This contribution proposes
the use of such local context information for the evalua-
tion of image quality or inter-image differences by the pla-
nar glyph representation of multivariate data and the induced
geometric-inspired difference measures.

1. INTRODUCTION

Classically, the difference between images is measured by
mean squared error-type differences and their normalized
versions, such as the signal-to-noise ratio (SNR). This type
of objective measures account only for pixel-to-pixel dif-
ferences and not for the local (spatial) image context and
does not comply to the human visual system characteristics.
Several image difference (and image quality) measures have
been introduced in order to accommodate the two (related)
problems of the local pixel context and correlation to the per-
ceptual observations [5], [4].

One of the most recently introduced image quality mea-
sures is the image quality index (Q-index), introduced by
Wang and Bovik [11] as:
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In the equation above, the quality index Q measures the dis-
tance between images I; and I,, based on the local means
(I, ), variances (G,zl, 0,22) and covariance (0y,7,) of the im-
ages to be compared. As described by the authors, this index
models various distortions as a combination of three factors:
loss of correlation, distortion of luminance and distortion of
contrast. The statistical mean, correlation and variance are
measured locally, in a neighborhood of each pixel of the two
images I; and I, that are to be compared. We shall use this
Q-index as further comparison basis, since it uses local mea-
sures and is shown to be well correlated to the subjective
judgements [11].

The remainder of the paper is organized as follows: sec-
tion 2 explains the glyph representation of multivariate data,
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section 3 introduces the proposed distances derived from the
glyph representation and section 4 presents experimental re-
sults on image quality measurement and contour extraction.
Finally, section 5 presents some conclusions of this work.

2. GLYPH REPRESENTATION OF MULTIVARIATE
DATA

We propose to exploit a new approach, inspired by the re-
duced ordering principle of Barnett [2] that has also been
used in multivariate data visualization [7]. The idea is to map
the multivariate data to some familiar, two-dimensional ob-
jects, that can be grouped, compared, and plotted in a more
suitable fashion for human perception. Examples of such
mappings are the Chernoff faces [3], [7], the Andrews curves
[1] and their possible extensions [9], the basic and modified
parallel coordinates [7] and the star glyphs [7].

A star glyph associated to a p-dimensional (p > 2) data
vector is a polygon obtained by connecting p points in
the two-dimensional plane. The points are taken along p
origin-concurrent, equally-spaced axes that span the two-
dimensional plane (obviously, the angle between every two
successive axes is 277/ p). Each axis is associated to one com-
ponent of the vector data, which is plotted according to its
magnitude (see two examples in figure 1). For example, the
star glyph that corresponds to p = 3 (figure 1 a)) is a triangle
and can be used for representing colors (three-dimensional
vectors) in the two-dimensional plane. The same type of
representation can accommodate data of higher dimensions,
such as the vector formed with the values of pixels located in
a fixed neighborhood of a given pixel.

In the following we shall focus on the use of a usual 3 x 3
neighborhood. Let x* be the value of the current pixel (the
pixel located at the center of the neighborhood) and x; to
xg the values of its 8 neighbors. The local relative context
can be measured by the eight differences y; = |x; —x*|, i =
1,...,8. The associated graphical representation is an octog-
onal glyph (see figure 1 b)).

3. A GEOMETRIC-BASED INTER-GLYPH
DISTANCE

Intuitively, we may consider the similarity measure between
vectors as the area of the intersection between the two associ-
ated glyphs. In order to construct a symmetrical and normal-
ized measure, we will follow the approach used by Swain [8]
in the definition of the distance between color histograms:
the normalization has to be performed with respect to the
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Figure 1: a) Star glyph associated to a three-component vec-
tor C = (x1,x2,x3) (a color, for instance). The angles be-
tween axes are 277/3 = 120°; the points P; (P, P, P3) are
placed on axes i at distance ||OP,|| = x;. The star glyph is the
PP, P; polygon (thick black line). b) Star glyph associated to
the eight-dimensional difference vector {y;}, i = 1,...,8 that
represents the local context of a given pixel. The angles be-
tween axes are 277/8 = 45°; the points P, are placed on axes i
at distance ||OF;|| = y;. The star glyph is the octogon drawn
with the thick black line.

maximum area of the two polygons. Thus, the similarity be-
tween vectors vi and v, represented by their corresponding
glyphs G| and Gy, is:

Area(G1NGy)
max {Area(Gy),Area(Gy)}’

The similarity defined in (2) can be transformed into a
distance by:

Sim (Gl,Gz) = (2)

d(G],Gz) =1- Sim(Gl,Gg). (3)

Such an approach was previously used in [10] as a means
to define an inter-color distance which was further used for
distance-based color image filtering.

4. IMAGE DIFFERENCE MEASURES AND USAGE

Let us consider the equally-sized, M x N scalar (gray-scale)
images I} and I,. The difference between the two images is
evaluated on the basis of both the local context of each pixel
(measured by the differences between the value of the cen-
tral pixel and the values of its neighbors and represented by
the octogonal glyph) and the value of that pixel itself (in a
one-to-one comparison). Since the value of the current pixel
is a more significant and relevant information than its local
context, it is not directly mixed into the planar glyph repre-
sentation. We shall rather imagine the geometrical model of
a parallelepiped with the base given by the local context (the
octogonal glyph)) and the height equal to the value of the
current pixel.

The distance between two pixels placed in images I and
I, at the same spatial location (m,n) and described by local
contexts represented by the glyphs G; and G, reduces to the
comparison of their associated parallelepipeds by a distance
similar to (2) and (3):

d(Iy(m,n),Iy(m,n)) =1—
minI (m,n),I,(m,n) x Area (G N G2)
max {I; (m,n) x Area(Gy),I,(m,n) x Area(G;) }

4

The equation (4) can be explained as follows: the similar-
ity between two parallelepipeds is the ratio of their common
volume to the maximum of the two volumes. The distance is
one minus the similarity.

The distance between the images I} and I is the average
distance between their pixels, computed according to (4):

1 M N
d(I,L) = TN z Z d(Iy(m,n),Iy(m,n)). 5

m=1n=1

4.1 Inter-image difference

There is a straightforward way to measure inter-image dif-
ferences according to the method defined above, in order to
establish a quality measure. For the given pair of images, I;
and I,, where I is the reference (original, undegraded) im-
age and I, is the degraded (or transformed) image, the mea-
sure of quality is the inter-image distance, defined according
to (5).

Figure 2: Peppers image degraded with additive Gaussian
noise and 2% impulsive noise.

We tested the proposed quality measure for images de-
graded by Gaussian, additive white noise, blurring and JPEG
compression, at five levels of degradation (Gaussian noise
of variance 5, 10, 20, 30, 40; blurring by averaging within
3x3,5%x5,7%x7,9%9and 11 x 11 neighborhoods; JPEG
compression at quality factors of 90, 75, 60, 45 and 30).

As expected, the inter-image distance defined accord-
ing to (5) is increasing with respect to the amount of image
degradation, just as the classical mean squared error.

We performed also a correlation test of the inter-image
differences with respect to the perceptual (subjective) grad-
ing of image distance, as judged by human observers. For
the test images, 6 observers were asked to grade the measure
of degradation of each of the tested images. The subjective
grades were then linearly regressed onto the various objec-
tive distance measures used (proposed distance, MSE, Q in-
dex). Table 1 presents the absolute value of the correlation
coefficients of the subjective and objective values for various
degradation methods used. As it can be easily noticed, the
perceptual grading is maximally correlated to the proposed
distance measure.
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Figure 3: Pixel difference map for the degraded image from
figure 2 computed according to (4). The most important dif-
ferences are mapped into darker gray tones; it can be noticed
that the white noise impulses superimposed on dark image
areas are producing the biggest differences, as visually per-
ceived by an observer.

Figure 4: Original Lena image.

Degradation \ Measure | SNR Q Glyph
Gaussian noise -0.958 | 0.957 | 0.988
Blurring -0.915 | 0.930 | 0.969
JPEG compression -0.894 | 0.841 | 0.920

Table 1: Correlation coefficients between the average percep-
tual grading of image degradation and the tested objective
image quality measures. The image quality measure based
on the proposed planar glyph representation of the local im-
age context is the most correlated with the subjective judge-
ments.

4.2 Contour extraction

Let us consider that the image I, is a blurred version of the
original image I;. The differences between the two images

Figure 5: Heavily blurred version of original Lena image.

Figure 6: JPEG compressed version of lena image (quality
factor 50).

are located along the edges and details of the objects within
[6]. Thus, the map of the inter-pixel differences, computed
according to (4) is an edge intensity map that can be used for
contour extraction.

The contour thickness and the contour sensitivity can be
controlled by the amount of blurring applied to the original
image. The following figures present some examples of edge
intensity maps extracted from classical test gray-level images
by by the proposed method with various amounts of blurring.

5. CONCLUSIONS

This contribution proposed a new method for the evaluation
of image quality or inter-image differences by the use of local
context information. The values from each pixels neighbor-
hood are mapped to a planar glyph representation (as pri-
marily used in multivariate data representation and analy-
sis). The comparison is performed at the neighborhood level
by some geometric-inspired normalized difference measures,
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Figure 7: Plot of the proposed glyph-based image quality
measure for the test images used with respect to the degra-
dation strength: additive Gaussian noise (circle marks), blur
(star marks) and JPEG compression (square marks).

Figure 8: Edge intensity map of the Lena test image com-
puted according to the proposed method, using a blurring by
3 x 3 neighborhood averaging.

induced by the particular nature of the glyph representation.

We compared the proposed inter-image distance based on
glyph representation with two classical image quality mea-
sures — the signal to noise ratio and the universal image qual-
ity index — for the correlation to the perceptual grading of
three distortion types: blurring, JPEG compression and ad-
ditive noise. The tests showed that the proposed measure is
more correlated to the subjective judgement than its counter-
parts.
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