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ABSTRACT
The filter involving the adaptation scheme of Volterra Series
Least Mean Square(VSLMS) algorithm is a representative
adaptive nonlinear filter, which has been applied to a lot of
engineering applications. However, when the VSLMS filter
is used as an adaptive predictor of speech, a large number of
speech data samples are required to minimize the predictive
error. And if the VSLMS predictor is used for short-term pre-
diction with a high order of the quadratic kernel to increase
the predictive gain, it is suffered from its numerical unstabil-
ity. To conquer such problems, an iterative approach is pro-
posed in this paper. The iterative approach gives an effect to
utilize a large number of speech data samples by using a seg-
mented speech signal repeatedly. Experiments are conducted
on continuous speech and it is shown that the predictive ac-
curacy of the VSLMS predictor is improved by relying on
the iterative approach.

1. INTRODUCTION

Speech production is extensively assumed to be modeled by
the use of a linear filter. In fact, the technique of linear pre-
diction (LP)[1] has been used in many speech processing sys-
tems, in which the speech signal is modeled as the output of
a linear all-pole filter whose input is white noise for unvoiced
speech or a chain of impulses for voiced speech.

When the LP analysis of a speech signal is made, ba-
sically the coefficient vector results in an accurate repre-
sentation of the speech signal if the predictive order is de-
termined adequately. However, the LP analysis on voiced
speech sometimes may lead to an inaccurate result. This
is because the excitation sequence of voiced speech has im-
pulsive characteristics and affects adversely the performance
of the LP analysis[2]. In particular, this is visualized in the
residual sequence produced by the LP analysis[3].

To overcome such a problem, Thyssen et al[6] addressed
the use of nonlinear prediction based on multilayer percep-
tron. On the other hand, recently Vorogle et al[7] reported
a new configration of predictive analysis relying on recurent
neural networks. However, in neural networks, we generally
need experimental references(knowledge) in order to deter-
mine their layer structures. Furthermore, a large number of
data samples are needed to achieve convergence and the cor-
responding desired solution cannot be always obtained.

The above-mentioned methods are implemented in a
form of batch processing, but a sequential form, adaptive
nonlinear prediction, is also known[4]. Mumolo et al[5] pro-
posed an adaptive nonlinear predictor based on a configra-
tion of Volterra Series(VS) filter for the purpose of ADPCM
and achieved improvement of a performance relative to the
counterpart of its linear predictor. If the LMS algorithm[8]
is deployed for the adaptation procedure of the VS filter, the

computation of the resulting VSLMS predictor is very sim-
ple. However, the convergence speed of the VSLMS pre-
dictor is not sufficiently fast. This results in an inaccurate
representation of speech, increasing the predictive error. Al-
though Carlos et al[9] applied the Kalman filter theory to the
VS fiter, the resulting adaptive filter is too complicated for
implementation, which seems to be inadequate for speech
applications.

In this paper, we address a technique that keeps the com-
putational simplicity of the VSLMS predictor and provides
an accurate representation of speech. An iterative operation
is used, with which the VSLMS predictor is implemented.

2. VSLMS PREDICTOR

In this section, we consider the quadratic VSLMS predictor
as depicted in Figure 1, in which the speech signal s(n) is
assumed to be predicted from its previous values such as

ŝ(n) = φ(s(n−1),s(n−2), ...,s(n−M)) (1)

where the hat denotes an estimate and φ(·) means a mapping
function including adjustable parameters.
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Figure 1: Quadratic VSLMS predictor

When the function φ(·) in (1) behaves nonlinearly, an
adaptive nonlinear predictor can be realized. Mumolo et
al.[5] deployed the quadratic Volterra filter for the function
φ(·). In this case, the estimate of the speech signal is given
by

ŝ(n) =
M1

∑
i=1

ais(n− i)+
M2

∑
i=1

M2

∑
j=i

bi js(n− i)s(n− j) (2)

where ai, i = 1,2, ...,M1 and bi j, i, j = 1,2, ...,M2 correspond
to the linear and quadratic predictive coefficients, respec-
tively. In (2), the symmetrical charactaristic of quadratic pre-
dictive coefficients, bi j(n) = b ji(n), is considered and the re-
dundancy in quadratic configration is omitted.
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The adaptation procedure for the VSLMS predictor is
given by

e(n) = s(n)−q(n)T h(n) (3)

h(n+1) = h(n)+
µ

q(n)T q(n)+β
q(n)e(n) (4)

where q(n) is the input vector at time n

q(n) = [s(n−1),s(n−2), ...,s(n−M1),

s(n−1)2,s(n−1)s(n−2), ...,s(n−M2)2]T (5)

and h(n) is the coefficient vector at time n

h(n) = [a1(n),a2(n), ...,aM1(n),b11, ...,bM2M2 ]
T . (6)

The µ and β mean the step size and stabilized parameters for
the normalized LMS algorithm, respectively.

The VSLMS predictor can minimize the mean square
predictive error. Hence the least square solution for the pre-
dictive coefficients can be expressed analytically. Since the
nonlinearlity of speech is deeply related with the quadratic
kernel for a VS filter[6], the VSLMS predictor can result in
an excellent nonlinear predictor reducing more the predictive
error than the linear predictor. However, the VSLMS predic-
tor requires a large number of data samples to minimize the
predictive error. Additionally, a large number of coefficients
are required to be set for the quadratic kernel. This is realized
by increasing the order of the quadratic kernel. However, the
VSLMS predictor with a high order for the quadratic ker-
nel very often become numerically unstable on real speech.
Thus, in ths paper, we set out to suppress the appearance of
the unstable phenomenon of the VSLMS predictor by keep-
ing the order of the quadratic kernel comparatively lower.

3. ITERATIVE APPROACH

For the purpose of speech analysis, the convergence speed
of the adaptive predictor to be deployed should be carefully
considered. It is said that on real countinuous speech, the
stationary property is kept during 20-30 ms. For such a short
length of speech, the convergence of any adaptive predictors
may not be guaranteed. Reducing the number of data sam-
ples for the purpose of predictive analysis means increasing
the predictive error. The minimum predictive error is ob-
tained when the convergence of the deployed adaptive pre-
dictor is achieved. Therefore, there exits a trade-off between
the number of data samples and the preditive accuracy.

To solve this problem, we propose an iterative approach
in which the speech data in the analysis frame are used re-
peatedly. The method is implemented as follows.
1. The initial values of the predictive coefficient vector are

set to zeros (for the VSLMS predictor, h(1) = 0).
2. The adaptation is carried out in the analysis frame from

1 to N.
3. The final coefficient vector and input vector (for the

VSLMS predictor h(N) and q(N)) are stored.
4. As the initial setting of the coefficient vector and input

vector, those obtained in Step 3 are used.
5. The value of step size is decreased by a fixed value of p,

and go to Step 2.
With a small number of data samples, the predictive anal-

ysis of speech may not be conducted adequately. However,

if the predictive coefficient vector and input vector are stored
as the initial setting for the adaptation, then those are used in
the same analysis frame and we can make the predictive anal-
ysis again, which corresponds to the case where the analysis
frame length is extended by a factor of two. This operation
is easily extended. If the framed data samples are repeatedly
used, then a large number of data samples could be utilized
for the predicitve analysis. In the next section, experiments
are conducted on real speech to confirm the validity of the
VSLMS predictor with the iterative technique.

4. EXPERIMENTS

To investigate the performances of the VSLMS predictor
with the iterative technique, we conducted experiments on
real speech signals sampled with 10 kHz.

4.1 Relation between the number of iterations and pre-
dictive gain

At first, we investigated the relation between the number
of iterations and predictive gain(SNR). In the experiments,
speech data used are 2 male and 2 female speakers, each of
which consists of 5 vowels. We used only 300 data sam-
ples for each vowel here by considering the stationary prop-
erty of continuous speech. The predictive order and stabi-
lized parameter were commonly set to M1 = 10, M2 = 3 and
β = 0.05, these gave the stability of the VSLMS predictor.
At the first iteration, the step size was set to the optimum
value the VSLMS predictor provides on each vowel (some
preliminary experiments were conducted to find the optimum
value). And then, as the number of iterations was increased,
the value of step size was decreased by 0.05 at each iteration.
The predictive gain was evaluated as

SNR(dB) = 10log10
∑n2

n=n1
sw(n)2

∑n2
n=n1

ew(n)2 (7)

with the setting of n1 = 1 and n2 = 300, where sw(n) is the
framed speech signal and ew(n) is the corresponding predic-
tive error.
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Figure 2: Relation between the number of iterations and the
average of predictive gains on 5 vowels for the VSLMS pre-
dictor with iterative approach

Figure 2 shows the relation between the number of itera-
tions and the average of predictive gains on 5 vowels. From
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this figure, we notice that the predictive gain is drastically
improved only by 1 iteration, and after about 10 iterations,
one reaches to the convergence providing an improvement of
2-3 dB. Figure 2 obviously validates the effectiveness of the
iterative approach.

4.2 Experiments on continuous speech

Next, we conducted experiments on continuous speech.
Speakers are 2 male and 2 female Japanese. Each sentence
is about 5 s. These speech data were adopted from “Multi-
Lingual Speech Database for Telephonometry 1994(NTT
Advanced Technology Corp.).”

Both of the LMS predictor and VSLMS predictor are
investigated. The predictive order and stabilized parameter
for both are commonly set to M = 10 and β = 0.05. The
quadratic predictive order for the VSLMS predictor is set to
M2 = 3 to keep the VSLMS predictor stable. The step size for
both predictors is optimized to achieve the best performance.
The frame length is 30 ms. As a criterion of the performance,
we used the predictive gain in (7) with the setting of n1 = 1
and n2 = 300.

For continuous speech, the relation between the analy-
sis frame length and the speech period should be considered
more carefully. Thus, we investigated additionally two dif-
ferent frame lengths ; 24 ms and 36 ms. (In these cases, we
evaluated the predicitive gains with the setting of n1 = 1 and
n2 = 240, and with the setting of n1 = 1 and n2 = 360, re-
spectively).

Tables 1 and 2 show the resulting predictive gains on con-
tinuous speech uttered by male and female speakers, respec-
tively. In these Tables, “adaptive” means that the adaptive
predictor is adaptively implemented on all the data samples
of 5 s. Tables 1 and 2 show that for the VSLMS predic-
tor, the frame based processing (the non-iterative processing)
provides better performance than the adaptive processing re-
gardless if the iterative operation is used or not. Futhermore,
the iterative processing provides better performance than the
non-iterative processing. From these results, we deduce that
the iterative approach could improve the accuracy of adaptive
prediction on continuous speech.

4.3 Application of iterative approach

In this subsection, a proposal system is introduced for effec-
tively making use of the iterative approach. Figure 3 shows
a configuration of the predictive analysis scheme to improve
the performance further. This scheme is derived by consid-
ering that an improvement in predictive gain is obtained by
utilizing the speech samples predicted in the regions where
the predictive coefficients are converged. At first, plural pre-
dictors are prepared in parallel (these make a different ar-
rangement for calculating the predictive gains. In Figure 3,
the case where 3 predictors are prepared is shown). On con-
tinuous speech, one fame length for the iterative processing
is selected so that the stationary property of speech is main-
tained (in the experiments, it is set to 300 samples(30 ms)).
Speech data samples are inputted to the first predictor, and
the iterative processing is performed. And the speech data
predicted in the region where the predictive coefficients are
converged are outputted (In Figure 3, we determined the re-
gion where the predictive coefficients are converged is from
200 to 300 samples(from 20 to 30 ms). Dotted circles in Fig-
ure 3 mean the regions).

The second predictor is set up so that the speech data
samples delayed by 100 samples(10 ms) are inputted. After
that, the iterative processing is performed and the speech data
predicted in the region where the predictive coefficients are
converged are outputted.

The third predictor is set up so that the speech data sam-
ples delayed by 200 samples(20 ms) are inputted. After that,
the processing of the third predictor is similar to those of the
first and the second predictors.

For the first predictor, the next speech data samples,
which are delayed by 300 samples(30 ms) from the starting
point, are inputted. Serial processing like this is conducted.
In such a way, we could utilize the iterative approach more
effectively.

We conducted experiments based on the configuration in
Figure 3. The parameters used in the experiments are sim-
ilar to those in Subsection 4.2. Table 3 shows the average
of the predictive gains in (7) with the setting of n1 = 201
and n2 = 300 where all the frames of each sentence have
been evaluated for the average. Comparing the predictive
gains obtained by the conventional methods(adaptive LMS
and adaptive VSLMS) in Tables 1 and 2 with that in Table
3, we see that an improvement of 4-5 dB is obtained. This
means that we can improve the predictive accuracy by using
the speech data samples predicted in the region where the
predictive error is converged.

5. CONCLUSION

In this paper, nonlinear predictive analysis for speech by iter-
ative approach was proposed. As the predictor, the VSLMS
adaptive filter was selected. For the purpose of improving
the predictive accuracy the VSLMS predictor provides, we
addressed an iterative method. The validity of the iterative
method was confirmed by experiments on real speech.

Furthermore, to make use of the iterative method more
effectively, we considered the region where the predictive co-
efficients are converged, and a configuration of parallel struc-
tures of the VSLMS predictors was derived. As a result, it
was confirmed that the predictive accuracy was further im-
proved.

1 analysis frame

first
predictor

second
predictor

third
predictor

all

Figure 3: Configuration of parallel VSLMS predictors
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