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ABSTRACT

Terrain-aided navigation is a method relying on a digital ter-
rain elevation database and radar-altimeter measurements and can
be applied to manned or unmanned aircrafts. Associated with an
inertial navigation system, terrain-aided navigation provides an ac-
curate estimation of position. Since the aircraft state estimation im-
plies non-linear filtering, the computational load of terrain-aided
navigation algorithms is generally high. Hence, for real-time im-
plementation, non-linear filters should be designed to achieve max-
imum performances with limited resources. In this work, we focus
on particle filter and Gaussian-mixture filter which are two classical
approaches to solve non-linear problems in a Bayesian framework.
We describe the two algorithms and compare their performances on
various terrain topographies. These simulations highlight that the
Gaussian-mixture filter achieves better performances and reliability,
in a situation where the filter design aims at reducing computational
requirements.

1. INTRODUCTION

With the recent development of autonomous aircrafts (unmanned
aerial vehicles, long-range cruise missiles), navigation reliability
and accuracy are key parameters for mission achievement. Tradi-
tional autonomous navigation systems are based on inertial mea-
surements. On-board accelerometers and gyro-meters sense the air-
craft movements. From these measurements, a navigation computer
continuously updates the estimated position, speed and attitude of
the aircraft. Inertial navigation systems (INS) are fully autonomous
and require no external aid. Unfortunately, initialization errors and
cumulated sensor errors lead to increasing uncertainties on INS out-
puts. So as to bound INS errors, additional position-related mea-
surements are needed. Various systems can be used in conjunc-
tion with inertial navigation systems: barometric altimeter, GPS re-
ceiver, optical or radar sensors. For an overview, see [1].

In this work, we focus on terrain-aided navigation (TAN).
Terrain-aided navigation encompasses all methods based on a com-
parison between a terrain elevation measurement and an on-board
digital terrain elevation database. A thorough introduction can be
found in [2]. A simple technical solution consists in measuring
the distance between the aircraft and the ground (ground clearance)
with a radar-altimeter (see figure 1). This distance corresponds to
the difference between the aircraft altitude and the elevation of the
area flown over (stored in the elevation database). Observations are
made regularly along the flight path.

The radar-altimeter provides an additional, indirect information
on aircraft position. The sensor-fusion problem consists in filtering
inertial sensors and radar-altimeter outputs to achieve an optimal
estimation of the aircraft state.

The optimal sensor-fusion problem can be solved in a Bayesian
framework [3]. Unfortunately, the optimal Bayesian filter is in-
tractable. The major difficulty is raised by the non-linear relation
between the radar measurement and the aircraft position. A clas-
sical approach is based on local terrain linearization and Extended
Kalman filter. On hilly terrains, local linearization hypothesis is
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Figure 1: Radar-altimeter measurement

only valid over small range, depending on the terrain roughness.
Therefore, Extended Kalman filter based methods do not perform
well and must be carefully initialized to avoid filter divergence. Be-
sides, for a highly non-linear problem, single Gaussian approxima-
tion of the posterior state density is not satisfactory.

Furthermore, the disparity of natural terrain topography be-
comes an additional difficulty for robust filter design and tuning.
On smooth terrains, the observability on horizontal position is low.
On rough terrains, similarities between several areas can result in
ambiguities on estimated position.

Several solutions have been developed to overcome these dif-
ficulties. Particle filtering has been successfully applied to terrain-
aided navigation [4] [5]. The particle filter is based on Monte Carlo
sampling, and thus requires heavy computations. The Gaussian-
mixture filter is also suitable for this problem [6]. We propose to
use a Gaussian-mixture filter with an updating step inspired from
Unscented Kalman filter algorithm [7]. Since the Gaussian-mixture
filter is not based on Monte Carlo methods, we expect a better effi-
ciency at equal computational cost. Needed, for a real-time imple-
mentation, where computational resources are limited, efficiency is
a key criterion for filter design. In the terrain-aided navigation con-
text, the filter should be usable for a large variety of terrain (smooth,
hilly or mountainous), it should converge as quickly as possible and
should avoid divergence. In this work, we compare the particle filter
and the Gaussian-mixture filter on that set of evaluation criteria.

In section 2, INS drift and measurement models are presented,
followed by the optimal Bayesian filter equations. The particle filter
and Gaussian-mixture filter algorithms are described in section 3.
In section 4, the two algorithms are compared in various situations,
and the results will be discussed in the last section.
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2. THE BAYESIAN APPROACH
2.1 INS/radar-altimeter hybrid navigation principle

First, a purely inertial aircraft state estimation is computed from ac-
celerometer and gyro-meter measurements. Then the sensor-fusion
filter estimates the difference between the actual state and that iner-
tial estimation (i.e. the INS drift). Finally, the INS drift estimate is
used to correct the INS output (see figure 2).

This approach has several advantages over a direct filtering
scheme. Firstly, the radar-altimeter data (few hertz rate) can be
treated asynchronously from inertial sensors measurements (several
hundreds of hertz). Secondly, the INS drift dynamics can be repre-
sented by a linear model. Finally, the inertial estimate remains avail-
able and uncorrupted in case of filter divergence or radar-altimeter
failure.

: - +
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sensors computer Corrected
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Sensor Fusion
Additional Filter INS error
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Figure 2: Sensor-fusion filter

2.2 INS drift model

The filter state contains INS position errors (in latitude, longitude
and altitude), speed errors and attitude errors (roll, pitch and yaw).
This is a minimal error state for a 6 degrees of freedom vehicle. The
state can be extended with other estimates of interest (for example,
accelerometer and gyro-meter bias). We denote x, the filter state at
time k. A generic linear model for INS drift can be written as:

X = Ex TGy (D

where u, is the noise vector (on accelerometer and gyro-meter out-
puts), u, is assumed to be a zero mean, stationary Gaussian noise.
The matrix F, and G, are deduced from inertial navigation equa-
tions. Their expressions depends on the inertial system technology.
In this work, we use a strap-down inertial system drift model. Fur-
ther discussions on INS drift models can be found in [8].

2.3 Measurement model

The measurement equation is given:
e =2z, —h(l, L) +v, )

where [, L, and z, are respectively the longitude, the latitude and
the altitude of the aircraft. The function & stands for the terrain
profile stored on-board. For the experiments, we used 3 arc-second
elevation maps (sample points are spaced out 1/1200 degree on lat-
itude and longitude). The terrain elevation is reconstructed by bi-
linear interpolation. The noise v, represents the measurement error.
It includes the radar-altimeter and map errors (difference between
actual terrain and the profile reconstructed from the digital map).
The choice of a model for the measurement noise is not trivial. In-
deed, radar-altimeter error sources are multiple and depend on many
factors (distance from the ground, terrain roughness, type of vegeta-
tion). Moreover, errors are time correlated (the closer the measure-
ment points, the stronger the correlation). In our work, we consider
v, as a Gaussian white noise. This hypothesis can be considered as
a rough simplification. However, as we aim at comparing particle
filter and Gaussian-sum filter performances, this simplification is
acceptable. Further investigations could be done with experimental
data.

2.4 Bayesian solution

Considering the state space model (1) and the measurement equa-
tion (2), the solution of optimal filter in the Bayesian framework is
achieved in two steps:

e Recursively compute the posterior distribution p(x,|Y,) of
state space vector given observations:

PIxIY, ) = [ plsix )P [V Ddx Gw)

p(yk|Xk)p(Xk\Yk71)
Y,)= 3b
p(Xk| k) fp(yk|xk)p(xk|Yk_l)ka .

where Y, = [y),...,y,]. The expressions of p(x,|x,_,) and
p(¥,]%,) are straightforwardly drawn from (1) and (2) and noise
density models.

e Compute a state estimator. The minimum mean square error
estimator (MMSE) is a classical choice:

f(kMMSE = /XkP(Xk|Yk)ka

3. FILTER DESIGN

Multidimensional integrals that appear in (3a) and (3b) are analyt-
ically intractable in general case, because of the non-linearities in-
troduced by the terrain profile. A general approach for nonlinear
filtering is to choose an approximation for p(x,|Y,) and to prop-
agate that approximation through (3a) and (3b). Non-linear filters
can be classified from the nature of this approximation. Most com-
mon non-linear filters for terrain-aided navigation are:

e the point-mass filter uses a fixed (or adaptive) discretization of
the state space (a ”grid”); p(x,|Y ) is recursively computed for
each node of the discrete grid.

e in the Gaussian-mixture filter, p(x,|Y,) is approximated by a
weighted Gaussian mixture.

e the particle filter propagates a set of weighted samples dis-
tributed according to p(x,|Y,).

In the following section, we present the particle filter and the
Gaussian-mixture filter algorithms.

3.1 Particle filter algorithm

Particle filter theory is explained in [9] and [10]. The principle of
particle filter is to use a set of weighted samples, called particles,
which represent a Monte-Carlo approximation of p(x,|Y,). Each
step of the filter consists in updating particle states and weights
to keep this approximation valid (in a stochastic meaning). The
generic particle filter algorithm is presented figure 3.

The choice of the so-called proposal distribution
q(x,|X};_;,Y,) - the distribution from which particles are
sampled at each iteration - is a crucial point of particle filter
design. More precisely, particle filters are affected by the particle
degeneracy phenomenon [9]: the variance of particle weights is in-
creasing over time and periodic resampling operations are needed.
The choice of a relevant proposal distribution can minimize the
degeneracy process [10]. In this work, we evaluate two different
proposal distributions:

o p(x|x,_,) which is the simpler and most common distribution.
Particles follow a random walk independently from the mea-
surements. This choice requires light computations but leads to
a severe variance growth, as p(x,|x,_,) is far from the optimal
proposal distribution.

e An interesting method for devising a proposal distribution
closed to the optimal one is to use local linearization around
each particle and to incorporate the last observation with a
Kalman filter associated to each particle. The computational
cost per particle is higher, but the number of particles can be sig-
nificantly reduced. This is the principle of the Extended Kalman
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particle filter and the Unscented particle filter [11]. The latter
is based on the Unscented Kalman filter [7], an attractive alter-
native to EKF for highly non-linear problems.

3.2 Gaussian-mixture filter algorithm

This method was introduced in [6]. A recent application to tracking
is presented in [12]. The state density p(x,|Y ) is here approxi-
mated by a weighted mixture of Gaussians:

N

PO Y ) =Y @A, (1 )
i=1

“

The mixture parameters {@},uf,Pi},_; v are recursively updated
with an Unscented Kalman filter bank. The algorithm is described
in figure 4.

Contrary to the particle filter, the Gaussian-mixture filter do not
rely on a sampling procedure. Moreover, process and measure-
ment noises must be additive and Gaussian. This limitation does
not exist for particle filter. Nevertheless, Unscented particle filter
and Gaussian-mixture filter algorithms are closely related and their
computational loads are equivalent.

4. SIMULATIONS

In this work, we implement and evaluate 3 distinct filters:

o A basic particle filter: (p(x;|x,_,) is chosen as the proposal
distribution). This filter is initialized with 5000 particles. We
add a regularization step [10] after the resampling procedure, so
as to improve the state space exploration.

e An Unscented particle filter with 1000 particles.

o A Gaussian-mixture filter. The initial mixture is composed from
N=500 Gaussian terms :

N
1 i
pxg) =Y. N (1o, Fp)
=

The means /.Lé are uniformly distributed over the initial search
region and the covariance matrix P, is adjusted to obtain a
smoothed density function.
A generic model of strap-down inertial navigation system is used
to generate inertial data from a simulated aircraft trajectory. The
radar-altimeter data are generated from the trajectory and terrain
maps. The altimeter sample rate is 2Hz. A Gaussian noise is added
to simulated output such as :

v, ~ A (0,100m?)

The simulation consists of 100 Monte-Carlo runs. For each run, a
new initial INS error is randomly chosen.

To compare algorithm performances, we focus on the following
criteria:

® Robustness versus terrain topography: each algorithm was eval-
uated on three terrain: a smooth one (terrain elevation between 0
and 110m), a hilly one (180m to 420m) and a mountainous one
(660m to 2260m). Filter parameters are adjusted to achieve best
performances on the hilly terrain (the “nominal” terrain). The
table 1 presents the number of failed runs for 100 simulations.
This test points out a significant degradation of the particle fil-
ter performances on smooth and mountainous terrains. Using a
Gaussian-mixture filter, this effect is clearly minimized.

o Computational load: we run the simulation on a Pentium IV
1.8GHz. Al filters are implemented in C++. The table 1 shows
that the Gaussian-mixture filter achieves good performances for
a reduced computational load.

e Convergence speed: the root mean square error (RMSE) of each
filter over time is presented figure 6. The Gaussian-mixture fil-
ter is equivalent to the Unscented Kalman particle filter. The
basic particle filter converges much slower. This is due to the
regularization step, which adds an artificial noise on particle tra-
jectories.

Initialization
Sample N particles from the initial distribution p(x):

xh ~ p(x,) and wh=1/N
Fork=1, -,
(1) Sample particles from a proposal distribution
X~ q(x [ X4, Y)
(2) Update and normalize particle weights

N p(yk|x};)p(xﬁ;\xifl)

e = Q1 I
q(x; X} . Yy)

N
and of=0f/Y of
i=1

(3) Resampling (optional)
Discard/duplicate particles according to their weight to
generate a new set of equally weighted particles.

(4) Evaluate MMSE estimator

N

sMMSE __ i

Xk = Z WX,
i=1

Figure 3: Particle filter algorithm

Initialization
Choose @), p, and B according to the initial distribution p(x):

=

plxg) ~ X, 0N (i, )

i=

Fork=1,--- o
(1) Time update
Mije—1 = Fili—
i i T T
Pj1 = B BE +G QG

(2) Measurement update
Compute ¥, Py 9, and P%; with Unscented transformation
method (see [7]5 and update mixture parameters:

S -
K =Py, (P)
e = Hy iy +Ki i
P= Plé/kfl —K; yllelc

(3) Weight update

N

. . . . P o

o'k =45 (0,Py5) and o = o/ Y o
i=1

(4) Evaluate MMSE estimator

N

~MMSE _ i

Xk = Z Oy e
i=1

Figure 4: Gaussian-mixture filter algorithm
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Figure 5: Convergence of the mean position estimate from a
Gaussian-mixture filter (in the horizontal plane)

Time Failed runs
(s) Smooth | Hilly | Mount
Basic PF (N=5000) | 20.4 68 20 57
UPF (N=1000) 23.2 59 18 35
GM-F (N=500) 10.1 35 9 24

Table 1: Robustness test results

5. CONCLUSION

In this work, we evaluate several non-linear filter designs for terrain-
aided navigation, which differ from the nature of the state density
approximation. The particle filter uses a discrete approximation
and thus requires a large number of particles to ensure a consis-
tent representation of the state density. Moreover, the simulations
have shown that a particle filter with a simple proposal distribu-
tion is very sensitive to the terrain topography. To reduce the num-
ber of particles and improve filter performances, a refined proposal
distribution is needed. In this purpose, the superiority of the Un-
scented particle filter has been illustrated. Nevertheless, the inher-
ent stochastic nature of particle filters limits the particle number re-
duction. In case of limited computational resources, the Gaussian-
mixture filter appears as an interesting alternative. In order to ap-

proximate the state density with a reduced set of parameters, the

smooth Gaussian-mixture representation is more suitable than a dis-

crete one. Indeed, the simulation highlights the benefit of using a

Gaussian-mixture filter, which offers an overall performance im-
provement and enables a significant computational cost reduction.

REFERENCES

[1] H. Durrant-Whyte. A critical review of the state-of-the-art
in autonomous land vehicle systems and technology. Tech-
nical Report SAND2001-3685, Sandia National Laboratories,

2001.
[2] Neil Priest. Terrain referenced navigation. In Position, Lo-

cation and Navigation Symposium Record, pages 482—489.
IEEE, March 1990.

Basic PF -
UP
Gaussian mixture filter -~
1 .
L‘.A
i

= i

5 N

2 o8 i
E i

s

£ (RN

S osf P 4
3 i

£ 5

= i

(%} 1

g L
1%) 04 | N i
= \
T \

|
\\
0.2 | N i
“\/‘\A x
0 | | | | [ e E e
0 5 10 15 20 25 30 35 40 45 50

Figure 6: RMS error for basic particle filter (solid line), unscented
Kalman particle filter (dashed line), and Gaussian-mixture filter

(dotted line). Estimation based on 100 Monte-Carlo runs using the
hilly terrain.

[3] N. Bergman, L. Ljung, and F. Gustafsson. Terrain naviga-
tion using Bayesian statistics. Technical Report LITH-ISY-R-
2139, Departement of Electrical Engineering, Linkoping Uni-
versity, Sweden, 1999.

[4] P. Nordlund. Sequential Monte Carlo Filters and Integrated
Navigation. PhD thesis, Division of Automatic Control, De-

partement of Electrical Engineering, Linkoping University,
Sweden, 2002.

[5] C. Musso and N. Oudjane. Recent particle filter applied to
terrain navigation. In Proceedings of the Third International

Conference on Information Fusion, volume 2, pages 26-33,
July 2000.

[6] D.L. Alpach and H.W. Sorenson. Nonlinear Bayesian estima-
tion using Gaussian sum approximations. IEEE Transactions
on Automatic Control, 17(4):439-448, August 1972.

[7] E. Wan and R. van der Merwe. The Unscented Kalman Filter
for nonlinear estimation. In Proceedings of Symposium 2000

on Adaptative Systems for Signal Processing, Communication
and Control. IEEE, 2000.

[8] P. Faurre. Navigation Inertielle Optimale et Filtrage Statis-
tique. Dunod, 1971.

[9] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A
tutorial on particle filters for on-line nonlinear/non-Gaussian

Bayesian tracking. IEEE Transactions on Signal Processing,
50:174-88, February 2002.

[10] A. Doucet, S.J. Godsill, and C. Andrieu. On sequential
simulation-based methods for Bayesian filtering. Statistics
and Computing, 10(3):197-208, 2000.

[11] R. Van Der Merwe, A. Doucet, N. De Freitas, and E. Wan.
The Unscented Particle Filter. Technical Report CUED/F-

INFENG/TR 380, Departement of Engineering, University of
Cambridge, 2000.

[12] V. Teulliere. Contribution au filtrage de Volterra et
U'estimation particulaire - Application aux transmissions

électroniques et acoustiques. PhD thesis, Laboratoire
d’ Analyse et d’ Architecture des Systemes du CNRS, 2000.

608



	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Mathieu Flament
	Gilles Fleury
	Marie-Eve Davoust



