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ABSTRACT

Any process applied to digital images has to be validated by
a performance measure. In the compression area, this mea-
sure of performance provides a quality measure of the recon-
structed images. The use of psychophysical tests to measure
the quality is quite time consuming. Therefore, many quality
metrics have been defined in order to reach a high correlation
degree with the human judgment. In this paper, a perceptu-
ally tuned metric based on a wavelet transform and a measure
of the intra- and inter-channel visual masking effect is devel-
oped. A performance measure is then computed in terms of
correlation and robustness to the type of image.

1. INTRODUCTION

Constraints of record, distribution and presentation of in-
formation require compression algorithms reducing the size
of the original message. During the compression process,
a quality metric has to be used to evaluate the perceptual
distance between the original image and the reconstructed
one, to optimize the compression rate with respect to the re-
quired quality. A quality metric has to evaluate the percep-
tion threshold of degradation for applications where differ-
ences between the original image and the reconstructed one
are not allowed. Furthermore, this quality metric has to pro-
vide a scale of perceptible degradation for applications that
do not need high quality (quality on demand).

Many quality metrics have been specifically developed
to evaluate the quality of reconstructed images. The most re-
cent integrate Human Visual System (HVS) models. Thus,
they are able to take into account known phenomena such
as the color representation, the contrast sensitivity as well
as masking effects. To develop a quality metric, the widely
used scheme consists in performing 1) a color space transfor-
mation to obtain decorrelated color coordinates, 2) a decom-
position of these new coordinates from perceptual channels.
Then an error is estimated for each one of these channels.
The final quality measure is obtained from a weighted sum
of these errors. Nevertheless, the process of the intra-channel
errors alone does not allow a consideration of the masking
effects due to existing interactions between different chan-
nels. Actually, FOLEY [1] has demonstrated that interaction
between different channels exists. WATSON and SALOMON
proposed a model integrating the existing interactions be-
tween luminance channels and chromatic channels [2]. ROSS

and SPEED [3], introduced a model based on an adaptive
term depending on one or more channels corresponding to
the spatial frequencies and the orientation.

In this paper, a new quality metric based on a vision
model integrating both intra and inter-channel masking ef-
fects is presented.

2. THE MEASURE OF THE QUALITY

Fig. 1 shows the used perceptual model integrated into the
quality metric. A transformation of the (R,G,B) coordinated
to the YCbCr color space [4] is performed. Then, from the
obtained coordinates

�
Y � Cb � Cr � , a wavelet decomposition is

applied to obtain a multichannel decomposition for different
frequencies and orientations. In this way, the decomposition
performed by the HVS is respected as closely as possible.
This transformation is performed using a 9/7 Daubechies fil-
ter [5]. The error is then determined for each subband, and
for each coefficient w located in

�
i � j � from

eb

�
i � j �����wb

�
i � j ��� ŵb

�
i � j �	� (1)

where b is the considered subband.
The distortion measure db

�
i � j � is then computed with re-

spect to a masking coefficient mb

�
i � j �

db

�
i � j ��� log



α � eb

�
i � j �

mb

�
i � j �
� (2)

where α is the parameter determined from the color contrast
sensitivity. mb

�
i � j � enables a consideration of intra and inter-

channel masking effects as follows :

mb

�
i � j ��� C

intra � b � i � j ���Cinter

�
i � j � (3)

where C
intra � b � i � j � represents a visibility threshold applied to

the coefficient located at
�
i � j � within the considered subband

b. Cinter

�
i � j � is a measure of inter-channel masking effects.

Thus, for each subband, a distortion measure is com-
puted. The greater the masking effect is, the better the quality
of (equ. 2).

Finally, a global score is obtained combining all of the
computed distortion measures, using the Minkowski sum

E ��� ∑
b

∑
i � j � db

�
i � j �	� β � 1 � β

with 1 � β � 4 � (4)
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Figure 1: Perceptual model used.

2.1 RGB Components Transformation

A decorrelating transformation must be applied to the first
three components of an image. Two goals have been
achieved by this transformation, namely, color decorrelation
for efficient compression and reasonable color space with re-
spect to the human visual system for quantization. We have
chosen to use the YCbCr color space. This space is widely
used for compression of color images since one can easily
reach high compression rates when the conversion is applied
to a color image before compression schemes. The linear
transformation of the R, G and B gamma corrected coordi-
nates is

� Y
Cb
Cr

� ��� 16
128
128

��� (5)

� 65 � 481 128 � 553 24 � 966� 37 � 797 � 74 � 203 112
112 � 93 � 786 � 18 � 214

� � R �
V �
B �
�

2.2 Masking model

Masking is an important visual phenomena that describes ex-
isting interactions between stimuli. The term of masking is
used when the perception of a stimulus S1 is masked by the
existence of a second stimulus S2. Since masking effects
are present within the spatial frequencies subband, one has
to take into account the masking effects within one subband
(intra-band masking effect) and the masking effects due to
the existing interactions between different frequencies sub-
bands (inter-band masking effects), as described in equ. 3.

2.2.1 Intra-channel masking

A visible stimulus can be hidden by another one. In other
words, the masking effect increases the visibility threshold
with respect to the mask contrast. A simple intra-band mask-
ing model must clarify how masking can be parametrized.
The model describes basically, how the contrast threshold ,
at which the signal becomes visible, varies with respect to the
presence of a masker contrast. The non linearity of the func-
tion of the sensitivity threshold C

intra � b can be approximated
by two piece-wise linear functions

C
intra � b � i � j ��� max

�
1 � wb

�
i � j � ε � (6)

where ε is the slope-parameter of the curve present in Figure
2. A typical value of ε from psycho-visual experiments is
ε � 0 � 75 [6].

Figure 2: Threshold elevation characterized by slope-
parameter ε .

2.2.2 Inter-channel masking

In order to model the increased masking provided by large
coefficients in other subbands, the model adopted needs to
take into account interband interactions over the three ori-
entations and the spatial support. In other words, a coef-
ficient predicting the masking effect over the three orienta-
tions is introduced. This coefficient, labeled as hi � j allows
the computation of the inter-band masking effect located at�
i � j � within the band u. The technique consists in using a

set of locally neighboring wavelet coefficients of size M � M
centered around position i � j over the three orientations. A
frequential Gaussian mask ω f is then applied on each neigh-
borhood, in order to filter high frequencies, as carried out by
the HVS. In each of the three subbands (corresponding to the
three orientations) a region centered around the position i � j
is weighted by a Gaussian kernel and summed. Then a spa-
tial Gaussian mask ωs is used to weight each of these sum.
Hence the final result hi � j is given by

hi � j � ∑�
i � j ��� Vi � j

ωs
�
i � j � ∑

u �
	 1 � 2 � 3 � ω f

�
u � ŵ2

i � j � u � (7)

where u is the channel number that runs over the three orien-
tations, and Vi � j represents the neighborhood M � M centered
around the position i � j. Here, the neighborhood is limited to
a region of 7 � 7. This is due to the fact that:
1. for values lower than 7, the size of the neighborhood is

too small to allow a correct and a whole evaluation of
existing interactions between the three subbands,
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2. for values greater than 7, the size of the neighborhood
can take into account all existing interactions between the
three subbands. Nevertheless, using a size of the mask
greater than 7, the obtained precision gain induces a dras-
tic growth of the complexity in terms of data access and
mathematical operations.

In Equ. (7), the weighting coefficients are normalized by

∑
u �
	 1 � 2 � 3 � ω f

�
u � ∑�

i � j ��� Vi � j
ωs
�
i � j ��� 1 � (8)

where ω f and ωs are taken from a Gaussian distribution

ω
�
R � � 1�

2π � 2
3 � � Λ � e 	 � 1

2
�
RT � Λ � 1 � R � � (9)

where Λ � E � � R � m � � RT � mT ��� represents the variance-
covariance matrix of the weighted mask.

The modeling of the inter-band masking can be formu-
lated as follows

Cinter

�
i � j � � max � 1 � hγ

i � j � (10)

where γ is a slope parameter.

3. EVALUATION OF PERFORMANCES

3.1 Methodology

There are a number of attributes that characterize a visual
quality metric in terms of the ability of its estimation perfor-
mance to respect the subjective ratings. These attributes are
accuracy, monotonicity, and consistency according to pro-
cessed type image (low-resolution scenery or strong contrast-
ing textures).

Accuracy aP is the ability of a metric to predict subjective
ratings with a minimum average error and can be determined
by means of the PEARSON linear correlation coefficient; for
a set of N data pairs

�
xi � yi � , it is defined as follows:

aP � ∑
�
xi � x̄ � � yi � ȳ �� ∑

�
xi � x̄ � 2 � ∑

�
yi � ȳ � 2 (11)

where x̄ and ȳ are the means of the respective data sets.
Monotonicity mS is another important attribute as it mea-

sures if increases in one variable are associated with in-
creases in the other variable. Ideally, changes of a metric is
rating between different sequences should always have the
same sign as the changes of the corresponding subjective
ratings. The degree of monotonicity can be quantified by
the Spearman rank-order correlation coefficient, which is de-
fined as follows:

mS � ∑
�
χi � χ̄ � � ψi � ψ̄ �� ∑

�
χi � χ̄ � 2 � ∑

�
ψi � ψ̄ � 2� 1 � 6

�
ψi � ψ � 2

N
�
N2 � 1 � (12)

where χi is the rank of xi and ψi is the rank of yi, and χ̄ and ψ̄
are the respective midranks. The Spearman rank-order corre-
lation is non-parametric, i.e. it makes no assumptions about
the form of the relationship between the xi and yi. Then, to

evaluate the performances of the proposed metric, we used
on the one hand the results of our previous work [7] which
consisted in a comparative evaluation of metrics proposed in
the literature and on the other hand a recently developed met-
ric [8].

So, in [7], it was shown that the metric proposed by
KARUNASEKERA et al. offers a good compromise between
accuracy and robustness regarding image type (from homo-
geneous to strong textured). In [8], LAI et al. developed a
quality metric based on Haar wavelet decomposition. thus,
they model some properties of the low level human vision
(contrast sensitivity, intraband masking effect, etc.). This
metric is correlated with rating obtained during psychophysic
test of quality.

The evaluation of the proposed metric consists in com-
paring with the two metrics described previously, according
to the three mentioned comparison criterions.

3.2 Results

The images used have been selected from the ”LIVE Qual-
ity Assessment Database” [9] color image database, Figure 3
showing a sample. The database is composed of 29 original
images (i.e., noncompressed). Their complexity ranges from
faintly textured to strongly textured.

(a) lighthouse (b) caps

(c) rapids (d) plane

Figure 3: LIVE database sample.

They are coded with 8 bits per channel and were com-
pressed with JPEG2000 standard. The compression rates
are chosen in order to obtain a reconstructed images quality
rating distribution which is relatively uniform on the rating
scale defined in the recommendation UIT-R BT.500-10 [10].
So, the database used totals 198 images.

In order to measure existing correlation between rating
obtained by means of the proposed metric and average qual-
ity rating (Mean Opinion Score) obtained by means of an
observers group, the evaluation quality results provided with
the LIVE image database were used. In this way a highly
boring observers rating process is avoided.

Table 1 presents results obtained for proposed,
KARUNASEKERA et al. and LAI et al. metrics.
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Metric Accuracy aP Monotonicity mS
Proposed 0.972 0.964
KARUNASEKERA 0.927 0.921
LAI 0.951 0.944

Table 1: Accuracy and monotonicity measured for each one
of the three metrics.

The results reveal a greater average accuracy at 97%, as
well as an average monotonicity at 96%. This denotes a
strong corelation between subjectively obtained values and
objectively obtained values (with the proposed metric).

Figure 4 presents quality values obtained by means of
the proposed metric versus quality rating provided with the
database. One notes that the metric remains correlated with
the average observers rating. It denotes a robustness of the
metric against the type of the images which are evaluated
(homogeneous or textured).
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Figure 4: Average values of the observers opinions versus
quality evaluated by the proposed metric.

4. CONCLUSION

A color compressed image quality metric integrating a mask-
ing effect (intra and interband) modeling was developed.

A change of spatio-colorimetric referential followed by
a wavelet decomposition of the image are first processed on
the original and compressed image. The intraband model-
ing used enables a quantification of the masking on only one
band, whereas the developed interband modeling affects each
of the three obtained orientations. Thus, the modeling pro-
vides a global measure of the masking effect.

The use of such modeling in the masking effect measure
provides a metric which is strongly correlated with human
perception.
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