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ABSTRACT

In this paper, we address convolutive blind source sepa-
ration (BSS) of speech signals in the frequency domain
and explicitly exploit the second order statistics (SOS)
of nonstationary signals. Based on certain constraints
on the BSS solution, we propose to reformulate the prob-
lem as an unconstrained optimization problem by us-
ing nonlinear programming techniques. The proposed
algorithm therefore utilizes penalty functions with the
cross-power spectrum based criterion and thereby con-
verts the task into a joint diagonalization problem with
unconstrained optimization. Using this approach, not
only can the degenerate solution induced by a null un-
mixing matrix and the over-learning effect existing at
low frequency bins be automatically removed, but a uni-
fying view to joint diagonalization with unitary or non-
unitary constraint is provided. Numerical experiments
verify the validity of the proposed approach.

1. INTRODUCTION

Among open issues in BSS, recovering the independent
unknown sources from their linear convolutive mixtures
remains a challenging problem. Other than the ap-
proaches conventionally developed in the time domain
(see [1] and the reference therein), we focus on the oper-
ation in the frequency domain in this paper, on the ba-
sis of its simpler implementation and better convergence
performance [2]-[6]. The representative separation cri-
terion used in the frequency domain is the cross-power
spectrum based cost function [4]. However, there are
two drawbacks of this criterion, one is the over-learning
effect (i.e., large errors of the off-diagonal elements of
the covariance matrix) existing at low frequency bins,
and the other is the degenerate solution induced by
W (w) = 0, which also minimizes the criterion.

On the other hand, it has been shown that an ap-
propriate constraint on the separation matrix W (k) or
estimated source signals with special structure, such as
invariant norm, orthogonality, geometry information or
non-negativity, provides meaningful information to de-
velop a more effective BSS solution, especially for real
world signals and practical problems [7]. We will show
that the constrained separation problem and the appli-
cation to convolutive mixtures can be reformulated as
an optimization problem with penalty functions using
nonlinear programming techniques. Following this, not
only can the previous two downsides be removed, but
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also some current approaches with either unitary con-
straint or non-unitary constraint have a unifying view-
point based on such an observation.

2. SECOND ORDER NONSTATIONARITY

Assume that N source signals are recorded by M micro-
phones (here we are particularly interested in acoustic
applications), where M > N. The output of the j-th mi-
crophone is modeled as a weighted sum of convolutions
of the source signals corrupted by additive noise, that is

N P-1

zi(n) =Y > hjipsi(n —p) +v;(n), (1)

i=1 p=0

where hj;, is the P-point impulse response from source
i to microphone j (j = 1,---, M), s; is the signal from
source %, x; is the signal received by microphone j, v;
is the additive noise, and n is the discrete time in-
dex. All signals are assumed zero mean. Using a T-
point windowed discrete Fourier transformation (DFT),
a time-domain linear convolutive BSS model can be
transformed into the frequency domain [2], that is

X(w, k) = H(w)S(w, k) + V(w, k) (2)

where S(w,k) = [S1(w,k), -+ ,Sn(w,k)]T and
X(w,t) = [X1(w,k), -+, Xn(w, k)] are the time-
frequency representations of the source signals and the
observed signals respectively, k£ is the discrete time
index, N and M are the number of sources and sensors
(M > N). Let W(w) be a weighted pseudo-inverse of
H(w), then Y(w,k) = W(w)X(w,k), where Y (w, k)
is the time-frequency representation of the estimated
source signals. The objective of BSS is to recover
independent Y;(w,k) (i =1, ---, N) from X(w, k), by
estimating W (w) using an appropriate criterion.

Non-stationarity of speech signals can be generated
in various ways, e.g. variation of the vocal tract filter
and glottis, and even detected through higher-order mo-
ments. Here we resort to the cross-power spectrum of
the output signals at multiple times, i.e.

Ry (w, k) = W(w)[Rx (w, k) — Ry (w, K)]W " (w) (3)

where R x (w, k) is the covariance matrix of X(w, k), and
Ry (w, k) is the covariance matrix of V(w, k) (referring
to [4] for its estimation) , and (-)¥ denotes the Hermitian
transpose operator. A necessary condition to exploit the
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SOS conditions for nonstationary signals is to ensure
that the Y;(w, k) are mutually uncorrelated. To this end,
we need to find a W(w) that (at least approximately)
jointly diagonalizes these matrices simultaneously for
all time blocks k,k = 1,..., K, Ry (w, k) — Ac(w, k),
where Ac(w, k) is a diagonal matrix. An effective cri-
terion for joint diagonalization of Ry (w,k) is to min-
imize the following off-diagonal loss function (denoted
by problem Fp) [4],

Py j(W(w))zarngnnzzzl (W) k)

(4)
where F(W) = ||Ry (w, k)—diag[Ry (w, k)|, diag(-)
is an operator which zeros the off-diagonal elements of
a matrix, and ||-||% is the squared Frobenius norm.

3. PENALTY FUNCTION BASED JOINT
DIAGONALIZATION APPROACH

Joint diagonalization is an effective and robust way to
employ the average statistical property of signals in the
BSS context. Other than the off-diagonal criterion in
(4), there are alternatives such as higher order statistics
based criterion [9] and the log likelihood based criterion
[10]. However, the various joint diagonalization crite-
ria consider the case either with orthogonal (unitary)
constraints WWY = T or with non-orthogonal (non-
unitary) constraints WW?* = 1. These constraints
have been traditionally addressed as a prewhitening pro-
cess or optimization on the Stiefel manifold for unitary
constraint and no hard whitening for non-unitary con-
straint. Effectively, these criteria can be reformulated as
the following equality constraint optimization problem,

P : min J(W(w)) st. g(W)=0 (5
where g(W) = [g1(W), -+, g,(W)]T : CN*M _ R"
denotes the possible constraints, J : CV*M — R! and
r > 1 indicates there may exist more than one con-
straint. It is unlikely that a generic penalty function
exists which is optimal for all constrained optimization
problems. Regarding the equality constraint, we intro-
duce a class of exterior penalty functions given as fol-
lows:

Definition 1: Let W be a closed subset of CV>*M A
sequence of continuous functions U, (W) : CV*M — RL,
q € N, is a sequence of exterior penalty functions for the
set Z if the following three conditions are satisfied:

UW)=0,YWeW, q € N, (6)
0<Uy (W) <Uyy1(W), VWEW, ¢ € N, (7)
UQ(W)*} o0, as q—>OO,VW¢ W7 (8)

Fig. 1 represents a typical example of such a function.
Therefore, it is straightforward to follow that a function
Uy (W) : CNXM — R defined in (9) forms a sequence of
exterior penalty functions for the set W,

Uy (W) £ ¢, llg(W)Il (9)

where ¢ € N, v > 1, (14 > ¢, > 0 and (;, — oo, as
q — oo, where b =1, 2,0or co.

Figure 1: U;(W) (: =0, 1, ---, 00) are typical exte-
rior penalty functions, where Uy(W) < U1 (W) < --- <
Uso(W) and the shadow area denotes the subset W.

Using a factor vector k to combine the exterior
penalty functions (9), our novel general cost function
becomes,

Py: J(W(w) =T (W(w)+&"UW(w)), (10)

where UW(w)) = [Uh(W(W)), - Us(W(w))]" is
a set of penalty functions with desired properties,
eg. W(w) # 0, J(W(w)) represents an original
joint diagonalization criterion, such as in (4), and
K=K, - ,IQT]T (ki > 0) are the weighting fac-
tors. The separation problem is thereby converted

into a new unconstrained optimization problem, i.e.,
arg minJ(W(w)).
W

Assuming that o(w) = (01(w), - ,on(w))" is the
vector of perturbations of g(W), the penalty functions
are in the form of (9), e.g. U;(W(w)) =|/g(W)|?, and
the penalty functions share the same parameter s in
(10), then minimization of the criterion with the equal-
ity constraint g(W) = 0 is equivalent to

min{7 (W(w)) + x| g(W)[*}
= \r)[\lflygl{j(W(W)) + K HU(W)HQ}
= min{x lo(w)[|*} + min{7(W(w)) : (W) = o}
= min{x[lo(w)|* + (o)} (11)

where ¥(o) is the perturbation function defined as the
optimal value function for the equality constraint prob-
lem. Equation (11) implies that by adding the term

k||o(w)|®, an attempt is made to convexify ¥(o) as &
increases, i.e., as Kk — 00, the perturbation value o ap-
proaches zero. This indicates that the constraint can be
satisfied while the criterion is minimized simultaneously.
However, it is unlikely in practical situations due to the
numerical problem and a finite penalty may generate
a satisfactory and well-understood solution (see section
4). Tt should be noted that, due to the limited space, we
have omitted proofs of the given theorems and theoret-
ical analysis of the proposed approach (We leave some
more details in [8]).
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Under the penalty function based framework, either
a unitary or a non-unitary constraint problem can be
deemed as an example of a penalized unconstrained op-
timization problem, whereas the forms of the penalty
functions can be designed accordingly. Assuming that
the cost function J(W) is twice-differentiable and cal-
culating the perturbation matrix A of W, we have the
following Hessian matrix

V23(W) 2 V2F(W) + H%Vzgi(“’)
2
U G, (W) V(W) (12)

It follows that as k — oo, W will approach the opti-
mum W. If W is a regular solution to the constrained
problem, then there exists unique Lagrangian multipli-

ers \; such that SUW) 25\¢Vgi(W) = 0 [12]. This

OW*
AUW N o
means K= — i as W — W. The first two terms

in (12) approach the Hessian of the Lagrangian func-
tion L(W) = F(W) + Z)\igi(W). Considering the
last term in (12), it is straightforward to show that as
Kk — 00, V2J(W) has some eigenvalues approaching
o0, depending on the number of the constraints, and
the other eigenvalues approach finite value. The infinite
eigenvalues will lead to an ill-conditioned computation
problem. Let € be the step size in the adaptation, then
in the presence of nonlinear equality constraints, the di-
rection A may cause any reduction of F(W+eA) to be
shifted by xU(W+eA). This requires the step size to
be very small to prevent the ill-conditioned computation
problem induced by large eigenvalues with a trade-off
of having a lower convergence rate. This is verified by
simulations in section 4. The eigenstructure provides
the guideline of the selection of penalty parameters in
practical applications.

4. NUMERICAL EXPERIMENTS

To evaluate the performance of the proposed method,
we use an exterior penalty function ||diag[W (w) — I H?,,
and a variant of gradient adaptation based on
AW (w) =kdiag|W (w) — I]W(w) [8] [11]. We use the
filter length constraint method as in [4] to address the
permutation problem which allows us to compare the
performance of the proposed method with that in [4]
(another SOS based joint diagonalization approach).
A system with two inputs and two outputs (TITO)
(N = M = 2) is considered for simplicity. Two real
speech signals are used in the following experiments,
which are available from [13]. We artificially mix the two
sources by a non-minimum phase system with Hy1(z) =
1410271 —0.75272, Hip(2) = 0.527°54+0.327640.2277,
Hyi(2) = —0.7:7% — 0.327% — 0.2277, and Has(2) =
0.8 — 0.1z~'. Other parameters are set to be D = 7,
T =1024, K =5, Wy(w) =1, and the step size in gra-
dient adaptation is 4 = 1. We applied the short FFT
to the separation matrix and the cross-correlation of the
input data. Fig. 2 shows the convergence behavior by
incorporating penalty functions, where we can clearly
see that by increasing the penalty coefficient k, we can
not only approach the constraint in a quicker way, but

Value of cost functions

Iteration number

Figure 2: Convergence performance of the new criterion
(10) (k # 0) and the criterion (4) (k =0, cf [4]).

also attain a better convergence performance. However,
from Fig. 2, we also see that a large penalty k (e.g.
x = 10) will introduce the ill-conditional calculation un-
der a common step size. This effect can be removed by
reducing the step size. Theoretically, due to the inde-
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Figure 3: The values (real part) of the off-diagonal ele-
ments of the cross-correlation matrices Ry (w, k) at each
frequency bin. (a) corresponds to the criterion (4) (cf
[4]); (b)-(d) corresponds to the proposed criterion (10).

pendence assumption, the cross-correlation of the out-
put signals in (3) should approximately approach zero.
Fig. 3 (a) (the imaginary part is not plotted due to its
similar behavior) shows that it is true at most frequency
bins, however there exists over-learning at very low fre-
quency bins. From Fig. 3 (b)-(d), we see that the over-
learning effect can be significantly reduced using penalty
functions. We further resort to the mean square er-

ror MSE(dB) = 101ogio{ % 1L, B [ys(k) - (k)] }

and set © = 0.06 (This allows the selection of a larger
penalty as compared to former simulations). Other pa-
rameters are the same as the previous experiments. The
estimation error is plotted in Fig. 4 (upper) in dB scale.
From this simulation, we can clearly see that the separa-
tion performance is improved with an increasing penalty,
and can reach up to 16dB when x = 10. However, with
further increasing of the penalties, the separation per-
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Figure 4: Performance measurement using MSE (upper)
for artificially mixing system and SIR improvement (be-
low) for a simulated highly reverberant room environ-
ment.

formance may degrade due to the fluctuation.
Another method to quantify the performance is using
signal to interference ratio (SIR) as defined in [4],

S i Hi@) (lsi@)l?)
S Lo i @) (I35 (@)*)

In this experiment, we use the roommiz function avail-
able from [14] by Westner to simulate a highly reverber-
ant environment. The simulated room is assumed to be
a 10m x 10m x 10m cube. Wall reflections are computed
up to the fifth order, and an attenuation by a factor of
two is assumed at each wall bounce. We set the position
matrices of two sources and two sensors respectively as
[225; 825], [3805; 785]. The parameters are set
the same as in the last simulation. The SIR is plotted
in Fig. 4 (below), which indicates that the separation
quality increases with the filter length of the separation
system. The performance is highly related to the fil-
ter length and it is especially obvious when the filter
length becomes long. Fig. 4 (below) also indicates that
incorporating a suitable penalty can increase the SIR.
Additionally, the penalty function may change the local
minima which can be observed from Fig. 4 (below), as
the SIR plot is not smooth and the increased amplitude
is not consistent between the two methods.

SIR[H,s] =10log

5. CONCLUSION

A new joint diagonalization criterion for separating con-
volutive mixtures of nonstationary source signals in the
frequency domain has been presented. Using the cross-
power spectrum and nonstationarity of speech signals,
penalty functions are accommodated within the conven-
tional criterion. This automatically removes the degen-
erate solution induced by the null unmixing matrix and

over-learning effect at low frequency bins, and hence im-
proves the separation performance. The new criterion
transforms the separation problem into a joint diagonal-
ization problem with unconstrained optimization which
provides a way of unifying the unitary and non-unitary
constraint joint diagonalization methods. The MSE and
SIR measurement show that, with a suitable function,
the proposed approach has superior separation perfor-
mance for the convolutive mixtures of speech signals.
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