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ABSTRACT

The use of partial update adaptive filters for stereophonic
acoustic echo cancellation is investigated. It is proposed to
employ subsampling of the tap-input vector, that is intrinsic
to partial update schemes, to decorrelate the two tap-input
vectors of the stereo adaptive structure thereby improving
convergence performance. The problem has been structured
as a joint optimization between inter-channel coherence and
the L1 norm of the inputs corresponding to the selected filter
coefficients. We investigate the trade-off between improve-
ment in convergence due to decorrelation of the two tap-input
vectors and any degradation in convergence due to subsam-
pling in the MMax-NLMS partial update scheme. The exclu-
sive MMax approach is proposed which efficiently approxi-
mates the joint optimization of these factors. Simulation re-
sults show an improvement in the rate of convergence over
standard NLMS approaches with a performance close to that
of fast-RLS in combination with a non-linear preprocessor.

1. INTRODUCTION

A serious problem encountered in stereophonic acoustic echo
cancellers (SAEC), shown in Fig. 1, is that the echo canceller
coefficients do not necessarily converge to the true impulse
responses of the echo path when full modelling of the trans-
mission room exists (nonuniqueness problem) [1] [2]. In a
practical case where the lengths of the filters are less than the
impulse responses of the transmission room, the problem of
nonuniqueness is ameliorated to some degree. However, due
to the strong coherence between the two channel input sig-
nals, the convergence performance is poor and misalignment
is a significant problem.

To overcome the misalignment problem, it is therefore
desirable to reduce the coherence between the two input
channel signals. This has led to several approaches to the
problem that involve techniques to decorrelate the two input
signals using, for example, non-linear processing [1][3][4].
Furthermore, the computational complexity of stereophonic
echo cancellers is high because the number of taps can be
large and also because the use of least-squares-based algo-
rithms is often preferred in order to obtain sufficient levels
of cancellation. Therefore, there exists a dual motivation to
develop algorithms which have improved convergence per-
formance due to reduction of inter-channel coherence whilst
maintaining computational complexity to be as low as possi-
ble for practical reasons.

In partial update adaptive filtering, the tap-input vector is
subsampled so that only a subset of filter taps is updated at
each iteration [5] [6] [7]. The aim of this work is to investi-
gate whether such subsampling can bring a reduction in the
inter-channel coherence of the tap-input vectors that results
in improved convergence.
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Figure 1: Stereophonic Acoustic Echo Cancellation (after [1])

The problem has been structured as a joint optimization
of two scores - one describing the coherence between the
tap-input vectors of the two channels and the other describ-
ing the ‘closeness’ of the tap-selection to the MMax crite-
rion of the MMax-NLMS scheme [7]. In this context, the
ideal tap-selection is therefore one which selects elements of
the tap-input vectors such that the inter-channel coherence is
minimized whilst maximizing their L; norm.

This paper is organized as follows: Section 2 examines
the decorrelation effect due to tap-selection. We formulate
and present the XMNL-NLMS algorithm in Section 3. Sec-
tion 4 presents the simulation results while Section 5 con-
cludes our work.

2. DECORRELATION USING TAP SELECTION

In the single channel MMax-NLMS algorithm, with filter
length L, the MMax tap selection criterion selects only those
taps corresponding to the M largest magnitude tap-inputs
for updating at each iteration. It has been shown that, un-
der specified conditions, the rate of convergence of MMax-
NLMS depends on M whilst the same final misadjustment as
the NLMS is achieved. This is explained in [8] in terms of
the robustness of MMax-NLMS to choices of 0.5L <M < L
and graceful degradation in performance for M < 0.5L.

We emphasize here that we are not employing the partial
update concept to reduce complexity of the NLMS approach.
Instead, we are considering the use of partial updating to re-
duce the coherence of the two tap-input vectors of the SAEC
structure.

Figure 2 shows the effect of tap-selection on the mean co-
herence (averaged across frequency) between the two chan-
nels tap-input vectors which are highly correlated. For zero
mean and unit variance white Gaussian noise (WGN) input
and filter length L = 256, the mean coherence between the
tap-input vectors is calculated from the M selected tap-inputs
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Figure 2: Effect of taps selection on inter-channel coherence for L = 256
(2)MMax-NLMS (b) XM-NLMS

with the remaining L — M tap-inputs set to zero. The mean
coherence is then time averaged and plotted against M.

Figure 2(a) shows that the MMax-NLMS provides only
a modest decorrelation effect with decreasing M. This is due
to the high correlation between the two channel input vectors
which causes MMax-NLMS to select corresponding weights
in both filters for updating. This does not achieve our desired
effect of decorrelating the signals. Figure 2(b) shows the ef-
fect of decorrelation when exclusive MMax tap-selection is
employed. The reduction in mean coherence suggests that
tap-selection based on exclusivity may be employed to decor-
relate the two channel input vectors.

We now formulate the problem as the joint optimization
of the MMax criterion and inter-channel decorrelation (due
to tap-selection) by introducing an alternative tap-selection
criterion controlled by two variables: magnitude weighting,
W, to describe the ‘closeness’ of the tap selection to that of
the MMax scheme and coherence weighting, w, = 1 — wy,,
to describe inter-channel coherence between the subsampled
tap-input vectors respectively. A magnitude weighting of
wy, = 1 corresponds to selecting coefficients based on the
MMax criterion only.

We first assume a standard FIR adaptive filter configura-
tion and define A and C as square matrices containing ele-
ments a;;=|x{fB;;}| and c;; = coh{p;;} respectively. We de-
fine {B;; } as a tap-selection set with i and j representing the
different combinations of selecting M out of L coefficients in
each of the two filters (i, j = 1,...,XCy). The absolute sum
of the selected tap-inputs in a particular combination i and j
for the two channels is defined as the L norm a;;=|x{f3;;}|
while coh{f;;} is the coherence (averaged over frequency)
of the two tap-input vectors with L — M unselected inputs in
each channel set to zero. Elements a;; and c;; are each as-
sociated with a cost such that the least cost is allocated to
combinations having the maximum magnitude in A and the
minimum coherence in C. A total cost matrix is then derived
by summing matrices A and C after they are multiplied by
wy, and w, respectively. Defining u# and v as the tap-indices
of channels 1 and 2 respectively (u,v = 1,...,L), the update
equation incorporating tap-selection is then given by:

X(n)e(n)
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Figure 3: WEVN for (a)w,, = 1, (b) NLMS, (c) wy,= 0.9, (d) 0.7, (e) 0.1.
L=6, M=3, 1 =0.6,y=0.9.

Here Q(n) = diag{[qi(n) q2(n)]} such that at each time it-
eration 7,

{q1(w),q2(v)} —{ (1) i)illfé‘;vfjsgﬁmin}

where the dependence of g, g2, x; and x, on time » has
been temporarily omitted for clarity of notation. The tap-
selection set for minimum cost in matrix w, A +w.C is de-
fined as {Buin} while h(n) = [hl (n) hl(n)]! and %(n) =
(%1 (n) %I (n)]" represent the concatenated filter coefficient
vector and tap-input vector of the filters respectively. Vector
transposition is represented by the notation ” .

Figure 3 shows simulation results for the weight error
vector norm (WEVN) defined as

Ib—hi)”

WEVN = 1
[[hf?

2

for different values of magnitude weighting (w, =
0.1,0.7,0.9,1.0). In this simulation, the two channel inputs
are zero mean and unit variance WGN sequences. The co-
herence between the two channel inputs is controlled by Yy
(0 < y<1), where y=0 represents independent signals and
y=1 implies the two channel inputs being identical to one an-
other. In this simulation, y=0.9 is used to reflect the high
coherence of the two channel tap-input vectors in practical
applications. The adaptive filters have 6 taps per channel and
for every iteration, 3 taps are updated (L = 6,M = 3). For
clarity, WEVN for only one of the two channels is plotted
for each case of w,.

The simulation result shows that w,,=1 coincides with
MMax-NLMS where performance is close to that of the full
update NLMS as expected. The highest convergence rate can
be seen when w,,,=0.1 (w,=0.9) where there is a high empha-
sis on selecting the exclusive set of weights for updating (i.e.
none of the same coefficient indices can be selected in both
channels’ tap-input vectors). This is similar to finding (out of
LCy combinations) the exclusive set of weights for the two
filters such that the L; norm of the active tap-input vector is
maximized.
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3. XMNL-NLMS ALGORITHM

In this section, we develop an efficient algorithm for tap-
selection so as to exploit the technique for coherence reduc-
tion demonstrated in Section 2.

Consider as an example an SAEC system with channels
k= 1,2, adaptive filters each of length L = 4 and tap-input
vectors x;(n) = [x} ,xﬁcyz,xﬁ{ﬁ,x;ﬂv, where the input signals
{xx(n)} have been pre-processed by a non-linear processor
block [1] to give {x}(n)}. Let p(n) be the magnitude vector
difference such that p(n) = |x} (n)| — |x5(n)|,
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Our objective is to select M out of L taps for updat-
ing for which the corresponding (subsampled) tap-input vec-
tors have the maximum absolute sum, so as to approximate
MMax-NLMS as closely as possible, but also have the mini-
mum inter-channel coherence. Whereas in principle an ex-
haustive search of all possible tap selection sets could be
made for small L, the XMNL-NLMS algorithm finds an ef-
ficient approximation to the optimum tap-selection by con-
straining the search to tap-selections that are exclusive be-
tween the two channels so as to minimize the inter-channel
coherence. These exclusive sets can be pre-determined off-
line for any L and M = 0.5L. Within this constrained search
space, the tap-selection with maximum absolute sum can
then be found efficiently by sorting p(n). Consider an ex-
ample of p3 > p» > p1 > p4 for a particular time instance,
since p3 + p2 > p1 + pa, it can be shown that

b s+ ol X gl > W+ I gl 4 oo+ ] ()

Thus the tap-selection corresponding to inputs
Xj3, Xja, Xp; and x5, is closest to the MMax-NLMS
with the minimum coherence constraint satisfied by the
exclusivity of the tap-selection. It is worthwhile to note that
it is irrelevant to consider other tap-selection combinations
since they have smaller magnitude sum. This approach
allows us to eliminate (“Cy; — 1) possible combinations
thus allowing efficient implemention of the algorithm. The
XMNL-NLMS algorithm is shown in Table 1.

4. RESULTS

In the first part of the experiment, we compare the perfor-
mance of XMNL-NLMS with that of NLMS and NLMS with
non-linear pre-processor (NL-NLMS) [1] in a stereophonic
system using WGN input sequence. The microphone signals
were obtained by convolving the source with two impulse
responses g and gy of length 7" = 256. In this simulation,
two microphones are placed one metre apart in the centre of
both the transmission and receiving rooms, each 3x4x5 me-
tres in size. The source is then positioned such that it is one
metre away from each of the microphones in the transmission
room. The desired response in the receiving room is obtained
by summing two convolutions h! x| and hlx),. The impulse

responses g1, g2, ﬁl and flz were generated using method of
images [9] in all our experiments.

XMNL-NLMS Algorithm

M=0.5L

input vector: x'(n)  =[x{"(n) x5 (n)]"
filter coefficients: h(n) = LlllT(n) hl (n)]"
filter output: y(n)  =hT(n)x'(n)

error: e(n) =dn)—y(n)
difference vector: p(n) =[x (n)|—|x (n)|
weight update: h(n) =h(n)+uQ(n) "c‘x(,"(if)("’z)
selection matrix: ~ Q(n) =diag{[qi(n) qz(n)ﬁ»

x1(u) is one of the M maxima of p(n)

1
where g (u) _{ 0 otherwise

72(v) ={ (1)

and the dependence of q1, ¢2, x1 and x, on time n
has been temporarily omitted for clarity of notation.

x2(v) is one of the M minima of p(n)
otherwise

Table 1: XMNL-NLMS Algorithm

The lengths of the filters have been chosen to be equal
to that of g; and gy (L = T7=256) as the purpose of this
simulation is to show the effect of decorrelation introduced
by XMNL-preprocessor and not due to the ’tail’ effects of
the transmission room impulse responses [1]. For XMNL-
NLMS, M is chosen to be 128. The lengths of the unknown
system h| and h; are both R = 256. The signal-to-noise ratio
of 20dB is obtained by the addition of uncorrelated noise to
the desired response. In all our experiments, the non-linearity
constant a = 0.5 is used [1].

Figure 4 shows the WEVN for NLMS, XMNL-NLMS
and NL-NLMS. We have used an adaptive step-size of Y4 =
0.4. We see that NLMS converges to a poor misalignment
because of the non-uniqueness problem. The convergence
rate of the NL-NLMS can be seen to increase significantly
due to the additional decorrelation property of the XM pre-
processor. This means that a lower non-linearity constant
can be used to acheive the same rate of convergence hence
reducing non-linear distortion.

Figure 5 shows the comparison between the performance
of the XMNL-NLMS and fast-recursive least squares algo-
rithm with NL-preprocessor (NL-FRLS) [1]. The room im-
pulse responses are of length 7 = R = 1600, L=800, M=400
and the input sequence is WGN as before. The adaptive step
size of NL-NLMS and XMNL-NLMS are y = 0.8 while the
forgetting factor for NL-FRLS is A =1 — ﬁ [10]. It can be
seen that the performance of XMNL-NLMS exceeds that of
NL-NLMS and is close to that of NL-FRLS algorithm in this
room model example of realistic dimension.

In the last experiment, we have used a speech source as
our excitation signal shown in Fig. 6. The impulse responses
are of length 7 = R = 800, L = 256 and M = 128. As before,
we notice that the performance of XMNL-NLMS is close
to that of the NL-FRLS while exceeding that of NL-NLMS
algorithm.

5. CONCLUSION

This paper has proposed the use of partial update tap-
selection to decorrelate the tap-input vectors in stereophonic
AEC. We have illustrated this concept and shown that tap-
selection can indeed effectively decorrelate the signals. This
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Figure 4: WEVN for WGN sequence (a)NLMS, (b)NL-NLMS and
(¢)XMNL-NLMS. (L =T = R =256, M=128, a = 0.5, it = 0.4)
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Figure 5: WEVN for (a)NL-NLMS, (b)NL-FRLS and (¢c)XMNL-NLMS.
(L=800, T = R = 1600, M=400, a = 0.5, it = 0.8,A = 0.99987)

approach therefore provides a new technique for the solution
of the non-uniqueness problem. A tap-selection method has
been proposed employing joint optimization of the MMax
criterion and the level of decorrelation of the two chan-
nels tap-input vectors. An efficient XMNL-NLMS algorithm
has been formulated which approximates the optimum tap-
selection using the exclusive MMax criterion. Simulation re-
sults have shown (for WGN and speech signals) significant
improvement in performance compared to direct applica-
tion of NLMS and NL-NLMS. The performance of XMNL-
NLMS has been found to come close to one of the best exist-
ing approaches involving fast-RLS and a non-linear prepro-
cessor. The XMNL-NLMS has the benefits of low complex-
ity and the robustness inherent in NLMS-based algorithms
compared to least squares approaches.
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