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ABSTRACT

One of the many successful applications of Gaussian Mix-
ture Models (GMMs) is in image segmentation, where spa-
tially constrained mixture models have been used in conjuc-
tion with the Expectation-Maximization (EM) framework. In
this paper, we propose a new methodology for the M-step of
the EM algorithm that is based on a novel constrained op-
timization formulation. Numerical experiments using simu-
lated and real images illustrate the superior performance of
our methodology in terms of the attained maximum value of
the objective function and segmentation accuracy compared
to previous implementations of this approach.

1. INTRODUCTION

Image segmentation is the process that groups image pix-
els together based on attributes such as their intensity and
spatial location. A variety of different methods have been
proposed for image segmentation such as edge-based seg-
mentation, region-based segmentation, pixel labeling (clus-
tering) and hybrid techniques[1, 2, 3]. Gaussian Mixture
Models (GMM) is a well-known probabilistic model that has
been used successfully for clustering[4, 5]. The Expectation-
Maximization framework constitutes an efficient method for
GMM training based on likelihood maximization.

The application of clustering methods to image segmen-
tation has the particular characteristic that spatial information
should be taken into account. That is, apart from the intensity
values, the pixel location must also be used to determine the
cluster to which each pixel is assigned. Intuitively speaking,
in most cases it is desirable to assign the same cluster label to
spatially adjacent pixels. The Bayesian framework provides
a natural approach to implement these ideas. Following this
formulation, a likelihood term which is based exclusively on
the data captures the pixel intensity information, while a prior
biasing term that uses a Markov Random Field (MRF) cap-
tures the spatial location information. Thus, it is no surprise
that most recent image segmentation algorithms follow this
paradigm; see for example[6, 7].

Nevertheless, an inherent difficulty with this formulation
is that, due to the introduction of the prior, the M-step of the
EM algorithm cannot be implemented using closed form ex-
pressions. For this reason, in[6], a Gradient Projection (GP)
algorithm was proposed to implement the M-step.

In this paper we propose a novel method to implement
the M-step based on a closed form update equation followed
by an efficient projection method. We demonstrate with nu-
merical experiments using the synthetic in[7] and real image
data that the proposed M-step provides a better maximum of
the objective function than the GP approach proposed in[6].
In addition, it also yields better segmentation results.

The rest of this paper is organized as follows: In section 2
we describe the probabilistic model for image segmentation.
In section 3 we present our improvements to this model. In
section 4 we provide comparative experimental results and
finally in section 5 our conclusions and future work.

2. THE SPATIALLY VARIANT FINITE MIXTURE
MODEL

Let x' denote the observation at the ith pixel of an image
(i=1,...,N) modeled as i.i.d. The spatially variant finite
mixture model (SVFMM)[6] provides a modification of the
classical mixture model approach for pixel labeling. The
SVFEMM assumes a mixture model with K components each
one having its own vector of density parameters 6/.
According to the SVFMM approach, the probabilities
n; = P(j|x) of the ith pixel belonging to the jth cluster
(class label) are considered as additional model parameters
that should satisfy the following constraints: 0 < 7'[} <1

and Zf: 1 n; = 1. Let 7' denotes the probability vector for

pixel i, [T= {n!,... 7V} the set of probability vectors and
©={0!,...,0%} the set of component parameters. Then the
SVFMM model assumes that the density function f(x'|TT,®)
at an observation x' is given by

K .
f0) =Y mi¢(x'|67), (1)
j=1

where ¢(x/|07) is a Gaussian distribution with parameters
0/ = {ALL j O-j}'

Based on the above formulation the parameters of the
model can be estimated through likelihood maximization
(ML) using the EM algorithm. Since the pixel observations
are considered to be independent samples, a significant draw-
back of the ML approach is that the spatial pixel informa-
tion is not taken into account[8, 7]. To overcome this diffi-
culty the SVFMM method considers a maximum a posteriori
(MAP) approach by introducing a prior distribution for the
parameter set IT that takes into account spatial information
based on the following Gibbs function[8, 6, 7]

p(T) = Zexp(~U(T)) , where U () = f 3. V., (1)
()

The Z is a normalizing constant, while 8 is oftenly called
regularization parameter. The function V , (IT) denotes the

clique potential function of the pixel label vectors {7}
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within the neighborhood .4/ of the ith-pixel and can be com-
puted as follows

= 8w, A3

meN;

where the u;

im specifies the distance between the two label

vectors ' and ", i.e, u;,, = |’ — 2" = T (7} — 77")*.
The neighborhood .4/ is the set containing pixels that are hor-
izontally or vertically adjacent to pixel i. Finally, the function
g(u) must be nonnegative and monotonically increasing[8].
We have selected g(u) = (1+u~!)~! adopted from[8], while
in[6] the identity function h(u) = u was used. The function
g(u) penalizes less large values of u and thus is more robust
to outliers.

The use of the EM algorithm for MAP estimation of the
parameters {7;} and {6/}[6] requires that the conditional

expectation values z’] of the hidden variables are computed at
the E-step
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while in the M-step the maximization of the following log-
likelihood corresponding to the complete data set is per-
formed
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The function Q,,, » can be maximized independently for each
parameter. This gives the following update equations for pa-
rameters of the component densities

N (1) . 1 2
Ezlj xl EZJ xl t+ ]

and [GJZ}(H—I) _ i=l

R &0
23 Z‘sz
P

(6)

However, the maximization of the function Q,,,, with re-
spect to the label parameters {7'5;} does not provide closed
form update equations. In addition, the maximization proce-
dure must also take into account the constraints 0 < 7'[’ <1
and 2 17'5 = 1. Due to this difficulty a Generahzed EM

scheme for estimating the label parameters {7‘1:]} was adopted
in[6] following the iterative Gradient Projection method.
According to this method the gradient of the MAP function
is first projected onto the hyperplane of the constraints. Then
a line search is performed along the direction of the projected
gradient to find the label parameters {n}} that maximizes the
Opy4p function.

3. THE PROPOSED TECHNIQUE

In this section we present the new M-step which we demon-
strate experimentally in section 4 that improves the perfor-
mance of the segmentation algorlthm In order to maximize
Ouap (Eq. (5)) with respect n we set its derivative equal to
zero and obtain the following quadratlc expression

4 [mezwgwi’m)} (m)p> 46| zﬂgw,-,,,,)n;"] (nl) 2, =0,
,. 2, .

where ¢(u) indicates the derivative of g. It must be noted
that in the above equation the neighborhood .#; can include
pixels with updated label parameter vectors, as well as pixels
whose label vectors 7™ have not yet been updated.

The two roots of the above equation are easily found
and select only the root that yields 7 ’ > 0. This provides a

straightforward update for the values of label parameters 7'5
of each pixel i at the M-step of every EM iteration. However
we also have to ensure that these values satisfy the constraints
0< n} <1and EK, 1 77: = 1. In the following we present an
efficient novel pr0]ect10n algorithm to achieve this goal.

For convenience, let us now denote with a; (G=1,...,K)

the label parameter values nj > 0 (roots of Eq. 7). The
problem we address here is the following: “Given a vector
a € Z% with a; > 0 and the hyperplane 3%, y; = 1, find
the point y on the hyperplane with non-negative components
that is closest to a”. This can be formulated as a linear con-
strained convex quadratic programming (QP) problem:

K
mjnZ(yj—
L ®)

K
subjectto Y y; = landy; >0,Vj=12,... K.
=1

In order to solve the above QP problem, several ap-
proaches may be employed[9], such as active-set methods
that use Lagrange multiplies, as well as penalty-barrier
methods that formulate an objective function with penalty
terms for equality and barrier terms for inequality con-
straints. We use here an active-set type of method where
we exploit the fact that the Hessian is the identity matrix
which in turn leads to the derivation of closed form ana-
lytical expressions for the Lagrange multipliers. This is of
great value for both the efficiency and the robustness of the
method, since it avoids the burden of numerical instabilities
that occur frequently in the solution of large linear systems
when the associated matrices are nearly singular.

One may proceed using the following Lagrange function:

2 )t]yJ
©)

where A, is the multiplier for the equality and 4;, j =
1,---,K the multipliers for the inequality constraints. First
order necessary conditions imply:

yjzaj—|—/10—|—/1j. (10)

L()’al()#l) =
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Combining the above with the equality constraint yields:

1
A=—=—<a>—<A>, 11
0= ¢ a (11)
where < v >= %Zf: 1V Hence substituting )LO in Eq. (10)
we have that:

1

yj:E+aj—<a>+)Lj—</1>7 j=1,--- K. (12)

Note that the vector » with components b I % ta;—<a>

is the projection of a on the hyperplane 2;{: 1y; = 1. The

A’s must be chosen so as to satisfy the inequality constraints.
Khun-Tucker conditions[9] state that at the minimizer y*:

/lj >0, /11- >0 ify}‘- = 0 (Active constraint) , /ljy;f =0.
(13)

We present a very efficient iterative strategy for calculating
the A’s for the problem above.

Let y denote the vector at the current iteration. Initially
wesety; =b;, Vj=1,--- K. In the general case there exist
m negative components y ;. The corresponding set of indices
§={Jj, with y; < 0} constitutes the active set of constraints
for the current vector y.

e Forall j ¢ SwesetA; =0.
e For all j € S we set Vi = y}‘» = 0 and we compute the
corresponding A j by solving an m X m linear system that

force the inequalities to be satisfied as equalities, namely
y;j+A;— <A >=0,leading to

1
Aj:mzyk—yj. (14)

kesS

e We compute the updated y f values for j ¢ S using the new
vector A via Eq. (12).
The above procedure is repeated until a feasible point is ob-
tained, i.e. y ;=0, Vj. This is the desired minimizer (y* = y).
It must be noted that Eq.(14) produces positive values for
A ;» hence no constraint is to be dropped ever from the active
set. If once some y f becomes zero then it retains this value
for ever. This is a very important point as far as efficiency is
concerned and in addition guarantees the finite termination of
the algorithm. When all constraints are satisfied the sought
solution has been reached.

4. EXPERIMENTAL RESULTS

A series of image segmentation experiments have been con-
ducted to evaluate and compare the effectiveness of the pro-
posed technique. Since the main contribution of our work
is on improving the M-step of the SVFMM model that esti-
mates the label parameters 7;, we compared our approach
with the Generalized EM scheme proposed in the origi-
nal SVFMM model description that employs the Gradient
Projection technique (termed as SVFMM-GP) as described
in[6].

In a first series we present results using two simulated
test images (Fig. 1) being sampled from MRF model using
a Gibbs sampler[7], with K = 3 and K = 5 classes. We have

low medium high

K=5

low medium high

Figure 1: Six noisy test images with 3 and 5 classes using
three levels of noise.
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Figure 2: Plot of the Q,,,, function (a) and the classification
error (b) for various f3 values in the case of the three noisy
images with K = 3 and K = 5 classes.

added three levels of Gaussian noise with standard deviation
of 18, 25 and 52, respectively. Fig. 2 illustrates the compar-
ative results from the application of the two methods to each
noisy image. Two evaluation criteria have been used: a) the
maximum attained value of the function Q,,,, (Eq. (5)) and
b) the classification (segmentation) error defined as the per-
centage of mis-classified pixels. we provide two diagrams for
each problem that illustrate the performance of the models
according to the above two criteria for several values of the
parameter 3. These results, demonstrate that our approach
provides both higher Q,,,, values and also significantly bet-
ter segmentation accuracy (the mis-classification ratio is con-
siderably lower, especially for high levels of noise).

We have also tested the proposed algorithm for several
cases of real images. One of them (MRI image of size
512 x 512) is presented in Fig. 3, together with the com-
parative segmentation results for three values of parameter
B ={0.1,1,5} and K = 6 classes. In all cases the proposed
method provides better maximum values of the Q,,,» func-
tion.
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Original test image

(b)

Quap = —771163 Quap = —787193

Quap = —844617 Quap = —853547

B=5

Quap = —897147 Quap = —902880

Figure 3: Segmentation results and the Q,,, function value
for three 8 values of our approach (a) in comparison with the
SVFMM-GP method (b), considering K = 6 classes.

5. CONCLUSIONS

In this paper we present a new and fast method to maximize
the label parameter values at the M-step of the EM algo-
rithm for MAP based on GMM with MRF priors for im-
age segmentation. Experimental results on simulated and
real images demonstrate that the proposed modification im-
proves, in some cases significantly, the segmentation perfor-
mance of this method. Future work will focus on applying
the method to real world segmentation problems arising in
bioinformatics[10]. We also plan to design more sophisti-
cated prior functions that will take into account not only pixel
adjacency, but also image information obtained through pre-
processing, such as for example the existence of edges. Fi-
nally, another research objective is to to make the proposed
method faster on large images by employing recent tech-
niques for accelerated GMM training[11, 12].
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