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ABSTRACT 
In this paper a new formula for natural gradient based learn-
ing in blind source separation (BSS) problem is derived. This 
represents a different gradient from the usual one in [1], but 
can still considered natural since it comes from the definition 
of a Riemannian metric in the matrix space of parameters. 
The new natural gradient consists on left multiplying the 
standard gradient for an adequate term depending on the pa-
rameter matrix to adapt, whereas the other one considers a 
right multiplication. The two natural gradients have been 
employed in two ICA based learning algorithms for BSS and 
it resulted they have identical behavior. 

1. INTRODUCTION 

Many optimization tasks in literature are based on the mini-
mization (or maximization) of a cost function l, properly 
defined in relation to the addressed problem. The most used 
technique is the gradient descent (or ascent), that searches the 
global critical points of l by employing the gradient to the 
surface determined by l. A relevant improvement has been 
recently introduced in literature to speed such a searching up: 
it consists on substituting the standard gradient with a new 
one, namely the natural gradient. This is justified by the 
property of being Riemannian of the space of parameter in-
terested to optimization, as shown in [1], [2]. Therefore a 
Riemannian metric must be known and in dependence of that 
the direction of gradient can be adjusted to make conver-
gence faster. The measure of such an adjustment has been 
derived by Amari [1] in his steepest descent theorem, accord-
ing to which, given a generic Riemannian space 

{ }n= ∈ω RS�  and a cost function l defined on it, the steepest 
descent direction is: 

( ) ( ) ( )1l G l−∇ = ∇ω ω ω                         (1) 

where ( )l∇ ω  is the conventional gradient, ( )l∇ ω  is the 

here-defined natural gradient, and ( )1G− ω  is the inverse of 
the metric tensor. It is obvious that derivation of suitable 
formulas for natural gradient is strictly linked to the problem 
under study, and it necessarily passes through the calculation 
of the metric. 
Here blind source separation (BSS) is considered, and 

( )1G− ω  has been already derived in literature [1], [3] and 
corresponding natural gradient learning rules (relative to dif-

ferent algorithms) as well. Such rules have relevant proper-
ties, like Newton-like performances at gradient cost, and 
equivariance [4]. These also occur if relative gradient, de-
fined by Cardoso and Laheld [5], is applied. 
The same has been done in other relevant cases, as blind de-
convolution problem and adaptation of multilayer neural 
network. Moreover, it has also been shown that natural gra-
dient online learning is asymptotically Fisher efficient [1]. 
In all these considerations the Riemannian metric has been 
given without considering the chance of defining different 
ones that could lead to derivation of different natural gradi-
ents. This is what the authors have tried to show in the pre-
sent paper, addressing the BSS problem. Moving from the 
same idea developed by Amari in [1] to define the Rieman-
nian metric, a new tensor ( )G ω is formulated and accord-
ingly a new natural gradient formula. The usual one and the 
novel one have been implemented in two learning ap-
proaches for BSS and interesting results obtained. 

2. BLIND SOURCE SEPARATION 

As addressed in literature, BSS [6], [7] is the problem of re-
covering the original m-sources vector ( )ku  mixed by a non-
singular m-by-n matrix A , the mixing matrix, when both are 
unknown and the only available information is the mixed n-
signals vector =x Au , a part from hypotheses of statistical 
independence and non-gaussianity of input sources and 
n m> . This is achieved by determining an n-by-m ma-
trix W , the demixing matrix, such that the resulting output 
=y Wx  is equal to ( )ku up to permutation and scaling ma-

trices, P and D  respectively. That can be expressed as: 

= = =y Wx WAu DPu                            (2) 

The overall structure of BSS is depicted in Figure 1, where 
the contribute of noise ( )kv  is also taken into account. We 
shall fix ( )kv  to zero in the following. 
Different methods have been proposed in literature to solve 
this kind of problem, generally borrowed from Information 
Theory. We are going to consider here two ICA based ap-
proaches: one is based on minimization of mutual informa-
tion whereas the other, proved to be equivalent to maximum 
likelihood approach, on maximization of output entropy (the 
Infomax approach). It has been shown that they yield the 
same solution under ideal condition of perfect reconstruction.  
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Both of them consist on adapting the de-mixing matrix by 
using gradient information deriving from derivatives of suit-
able cost function ( ),l x W respect with the elements of W . 
The learning rule can be written as follows: 

( ),lη∆ = ± ∇W x W                           (3) 

where the sign indeterminacy allows to consider both maxi-
mization and minimization of ( ),l x W . Equation (3) obvi-
ously assumes different forms in dependence of the cost 
function chosen. The first ICA based method addressed 
minimizes the Kullback-Leibler divergence ( )f f

D W  be-

tween two proper distributions: the probability density func-
tion ( ),fy y W  parameterized by W , and the corresponding 

factorial distribution ( ) ( )
1

, ,
i

m

y i
i

f f y
=

=∏y y W W , that is the 

product of all marginal probability density functions of out-
put y . As derived in [6], [7], the final formula for the stan-
dard gradient based learning rule is the following: 

( ) T Tη ϕ − ∆ = − W I y y W                    (4) 

where ( )ϕ y  is the activation function and T stands for trans-

position. Infomax maximizes the entropy ( )H z  where 

( )g=z y  and g is the final nonlinearity whose shape de-
pends on the knowledge of the prior distribution of sources. 
Under this hypothesis, the learning rule is: 

( )1 2T Tη − ∆ = + − W W z x                     (5) 

as derived in [6], [7], always valid in case of standard gradi-
ent. We are going to consider square dimensions for the in-
volved matrices in the following. As already done, the time 
step will be omitted to simplify notation. 
 
 
 
 
 
 
 
 
 
Figure 1. Structure of blind source separation problem. 
 

3. NATURAL GRADIENTS IN MATRIX SPACES 

As aforementioned, the natural gradient, as defined in (1), 
represents the steepest descent direction of cost function 
( ),l x W  to maximize (or minimize) in a Riemannian space. 

Consequently, this links the natural gradient definition to that 
one of Riemannian metric over the parameter space. Such a 
space is the space W  of invertible matrix  m m×W  on R  and 
it satisfies all properties of Lie groups, if we consider the 

usual matrix product as operation of multiplication between 
two elements of the group. 
We are going to show two different but related ways to de-
fine a Riemannian metric on W�, i.e. the tensor field 
( )G W determining a W -point wise inner product for the 

tangent space TWW  [8]. Both of them will get started from 
definition of such an inner product by means of a two-step 
procedure: 
1) Definition of the inner product relative to a point in 

W (the identity matrix I , the neutral element of the 
group). 

2) Imposing that the W -point wise inner product be in-
variant to translations in W . 

Such a translation operation is nothing but a function that 
allows to move in the parameter space. It is defined as fol-
lows, taking into account that W is a non-commutative 
group: 

: :
( ) ( )

  Right Translation Left Translation

→ →

= ⋅ = ⋅ ∀ ∈
V V

V VW W V W V W V
T T

T T

W W W W
W  

Hence, given a curve ( ) :[ 1,1] , (0)tγ γ− → = VW , we can 
also apply the translation operation to  the curve ( )tγ  and to 
its derivative: 

0

( )(0) T
t

d t
dt
γγ

=

= ∈ V W  

Canonical inner product has been chosen as inner product at 
the “starting point” I , with (0), '(0)γ γ= =A B  tangent 
vectors belonging to TI W : 

1 1
,

m m

ij ij
i j

a b
= =

= ∑∑I
A B  

Now, we can proceed with the second step of aforementioned 
procedure: it requires to distinguish between the two possible 
translation modes. 
 
3.1. Right Translation 
 
Here we require that: 

, ( ), ( )

, ,
W W WW

W I

A B A B

A W B W A B

= =

⋅ ⋅

T T
             (6) 

The bi-linearity property of inner product and easy calcula-
tions let the following hold: 

( ),
, , ,

, ij kl ij kl
i j k l

a b G W= ∑W
A B                    (7) 

where , ( ) ,ij kl ij kl W
G =W E E  and the only ijE  entry not 

equal to zero is in location ( ),i j . Observing that (6) must be 
valid also for W -element like ijE , the following equation 

A W 
u(k) y(k) 

v(k) 

Σ
x(k) 
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can be derived to describe the tensor defining the Rieman-
nian metric: 

( ) 1 1
,

1 1

1

,ijij kl kl

m

jcik lc ik jl
c

G

hδ δ

− −

− −

=

= ⋅ ⋅ =

= =∑
I

W

W E W E W

W W
       (8) 

where ( ) ( )1 1 T

ijh − −= =W WH W W . 

A part from different notation, what just described is nothing 
but what Amari derived in [1], as (8) states. This let us an-
ticipate the final formula for natural gradient associated with 
the aforementioned metric, namely right natural gradient: 

( ) ( ) Tl l∇ = ∇W W W W                     (9) 

Derivation of (9) gets started from substituting (8) in (7) and 
operating as follows: 

 
1 1 1 1 1 1 1

,
m m m m m m m

ij kl ik jl ij kl jl
i j k l r j l

a b h a b hδ
= = = = = = =

= =∑∑∑∑ ∑∑∑W W

W
A B  

that can be further reduced as 

( ) ( )( )
1

,
m T

r r
r=

= ∑ W

W
A B A H B . 

This authorizes us to apply the theorem of steepest descent 
(1) separately for each row of the gradient ( )l∇ W calculated 

at W . In such a way we can identify the inverse of ( )G W  

as the inverse of WH  and write: 

( )( ) ( ) ( )( )1T T
r rl l

−
∇ = ∇WW H W                  (10) 

It can be straightforward derived that T=WH WW  by 

( )( ) ( )( ) ( ) ( )( )1 1 1 11 1 1 1 1
TT T− − − −− − − − −= =W W W W W W . 

Substituting this result in (10) and addressing all gradient 
rows, it results that ( )( ) ( )( )T TTl l∇ = ∇W W W W and con-
sequently (9). 
 
3.2. Left Translation 
 
Here we require that: 

, ( ), ( ) , ,W WW W W I
A B A B W A W B A B= = ⋅ ⋅T T  

The following equalities can be derived through similar con-
siderations as before: 

( )

( )

,
, , ,

1 1
,

1

, ij kl ij kl
i j k l

m

icij kl jl ck jl ik
c

a b G W

G hδ δ− −

=

=

= =

∑

∑

W

W

A B

W W W
 

where ( ) ( )1 1T

ijh − −= =W WH W W and the new tensor of the 

new metric is ( ) 1 1
, ,ijij kl klG − −⋅= ⋅

I
W W E W E . 

Now we can proceed as done before in right natural gradient 
case, observing first that: 

( )( )
1

,
m

T
c c

c=
= ∑ W

W
A B A H B  

and then applying the steepest descent theorem separately for 
each column of the gradient ( )l∇ W calculated at W . 

Hence, we can move from ( ) ( ) ( )1

c cl l
−

∇ = ∇WW H W   and 

calculate ( ) 1 T−
=WH WW , to derive finally the expression 

of left natural gradient: 

( ) ( )Tl l∇ = ∇W WW W                          (11) 

4. EXPERIMENTAL RESULTS 

In this section performances of the two ICA based learning 
algorithms are analyzed both when natural gradients and 
standard gradient are applied. Application of (9) and (11) to 
(4) and (5) leads to the following natural gradient based 
learning rules: 

( )
( )

T

T T

right

left

η ϕ

η ϕ

 ∆ = − 
 ∆ = − 

W I y y W

W W I W y x
         (12) 

( )
( )

1 2

1 2

T

T T

right

left

η

η

 ∆ = + − 
 ∆ = + − 

W I z y W

W W I W z x
         (13) 

Looking at (12) and (13), it seems that that the equivariance 
property is not satisfied by the new natural gradient. Indeed, 
being ( ) ( )k k=C W A  the global matrix describing the 
overall system, we can not specify the updating rule for the 
global matrix only in function of itself, as conversely it does 
in case of right natural gradient [3], [7]: 

( )
( )

1

1 2 2

C C WW y x A

C C WW z x A

T T

T T

ICA based method

ICA based method

η ϕ

η

 ∆ = − 
 ∆ = + − 

 

However, such property is satisfied again if we describe the 
system in Figure 1, interpreting  ( )ku as a row-vector, in-
stead of a column vector, as done till now. Equation (2)  can 
be now written as: 

y xW uAW uDP= = =  

while, the learning rules (4) and (5) become: 

( )
( )

1

1 2 2

W W I y y

W W x z

T T

T T

ICA based method

ICA based method

η ϕ

η

−

−

 ∆ = − 
 ∆ = + − 
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allowing us to derive the following ones in global matrix 
notation (now ( ) ( )C AWk k= ), in case of left natural gra-
dient: 

( )
( )

1

1 2 2

C C I y y

C C I y z

T

T

ICA based method

ICA based method

η ϕ

η

 ∆ = − 
 ∆ = + − 

 

The example dealt with considers a system involving 
2

1 = sin(400k)cos (30K)u  2 = sign(sin(150k+15cos(30k)))u  
as the two independent sources, while the mixing matrix is 

= [0.56,0.79;-0.75,0.65]A . Simulations have been per-
formed by using the batch version of considered learning 
algorithms, leaving unchanged the parameter values: number 
of iterations, learning rateη , number of signal samples and 
epoch size.  Figures 2-3 and Table 1 show how the employ-
ment of natural gradient allows to get a relevant improve-
ment respect with the standard gradient, while right and left 
translation based versions have basically identical behaviour.  
 
 

Learning algo-
rithms 

1st channel S/N 
[dB] 

2nd channel S/N 
[dB] 

Standard gradient Infomax 12.94 9.89 

Right natural gradient 
Infomax 93.39 94.34 

Left natural gradient In-
fomax 96.20 89.77 

Standard gradient ICA 14.52 10.22 

Right natural gradient ICA 118.93 120.41 

Left natural gradient ICA 124.20 102.04 

Table 1. S/N ratios in all cases addressed. They are relative to 
the number of iterations at which natural gradient based algo-
rithms get convergence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Signals involved in BSS problem: sources, mixed, 
and recovered. They are valid for all addressed algorithms (at 
convergence point). 

5. CONCLUSION 

A mathematical demonstration for derivation of a new natu-
ral gradient based learning rule for BSS problem has been 
provided. The definition of a different Riemannian metric 
from the usual one allowed to get an original natural gradient 
that behaves as well as that one proposed in [1], when ap-
plied to ICA and Infomax learning algorithms. This fact has 
relevant implications, since we can assume to derive other 
different natural gradients once we will be able to define 
proper Riemannian metrics in the parameter space. Conse-
quently, we could be interested to compare and rate their 
performances when applied to BSS learning algorithms. 
These aspects are actually under study. Another point to in-
vestigate should be the calculation of original natural gradi-
ents in other spaces, as those ones of perceptrons and  dy-
namical linear systems. 
 

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2
BSS error 1

iterations
          

S
/N

 ra
tio

 
[d

B
]  

   
 

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4
BSS error 2

iterations

S
/N

 ra
tio

 
[d

B
]  

   
 

standard
right
left

standard
right
left

 
Figure 3. Decaying shapes of S/N ratios of two output signals 
for three cases under study. 
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