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ABSTRACT
We propose a design method for perfect reconstruction mod-
ulated filter banks that can be used for an arbitrarily high
number of subbands. Its principle is based on the intro-
duction of a function, named prototype, that is defined over
the real field and is built in order to satisfy orthogonality
or biorthogonality properties. By a uniform sampling of
the prototype function, depending upon the number of sub-
bands, we get afterwards perfect reconstruction prototype fil-
ters. The method is presented in the case of an optimization
of the prototype function based on an energy criterion. The
quality of the resulting prototype filters is illustrated by de-
sign examples in the orthogonal case.

1. INTRODUCTION

Critically decimated modulated filter banks present many ad-
vantages. They can be implemented thanks to fast algorithms
and various design techniques are already available. More-
over, their design reduces to the optimization of only two
discrete-time filters, hd [n]and fd [n], called prototype filters,
that will be assumed to be real-valued. In this paper, we
will also assume that the two prototype filters are identical,
hd [n] = fd [n], but not necessarily linear-phase1. These proto-
types can be used in different contexts, e.g. for subband cod-
ing using cosine modulation [1] or modified discrete Fourier
transform (MDFT) [2], or even for multicarrier modulation
[3], the perfect reconstruction conditions being the same. We
just illustrate our method for modulated filter banks using a
type IV discrete cosine transform (DCT-IV).

We denote by N the number of subbands of such a filter
bank and the length L of the filters is assumed to be a multi-
ple of twice the number of subbands, i.e. L = 2mN. The N
analysis and synthesis filters are given respectively by [2]

hk[n] = 2hd [n]cos
[

(2k +1)
π

2N

(

n−
D
2

)

+θk

]

, (1)

fk[n] = 2 fd [n]cos
[

(2k +1)
π

2N

(

n−
D
2

)

−θk

]

, (2)

with θk = (−1)k π
4 , 0 ≤ n ≤ L− 1, 0 ≤ k ≤ N − 1 and D be-

ing the reconstruction delay, assumed to be such that D =
2(s + 1)N − 1, with s an integer parameter. For an orthogo-
nal prototype filter, D = L−1.

In order to get a perfectly orthogonal or biorthogonal
transformation, the coefficients hd [n] have to satisfy some

1In the linear-phase case, we then get orthogonal prototypes.

perfect reconstruction conditions [1, 2]. Thus, usual criteria
used for their optimization lead to some non-linear problems
which can not easily be solved. That is why, if there exist
various efficient techniques in the case of relatively reduced
lengths (cf. for example [4, 5, 6]), it is difficult to provide
orthogonal or biorthogonal optimized prototypes with many
coefficients. Recently, a method described in [7] has never-
theless made it possible to attain 2048 subbands and 16384
coefficients. Nonetheless, the computational complexity of
this method, that is still related to the evaluation of the op-
timization criterion, increases when the length of the filters
increases, and in particular when the number of subbands in-
creases. That is why we propose here a new method which
avoids this problem and allows the optimization of filters for
a number of subbands that can be absolutely arbitrarily high.
We illustrate it for an optimization criterion that is the maxi-
mization of the weighted energy of the prototype filter Hd(z),
measured by the expression

JWd (hd) =

∫

1
2
− 1

2

∣

∣Hd
(

e j2πν)∣

∣

2 Wd (ν)dν
∫

1
2
− 1

2
|Hd (e j2πν)|2 dν

, (3)

where Wd (ν) is a weighting positive function restricted to
the interval

[

− 1
2 , 1

2

]

. It is worthwhile mentioning that the de-
nominator term is a constant which simply allows us to get
an energy measure independent of any amplitude normaliza-
tion of the filters. Note also that this work gives an extension
in the biorthogonal case of our reference [8].

2. PROTOTYPE FUNCTIONS

2.1 Definition and properties
For an integer parameter m ≥ 1, we designate by Em the set
of functions h defined on the real interval ]−m,+m[ such that
on each sub-interval of ]−m,+m[ of the form ] l

2 , l+1
2 [, with

l = −2m,−2m+1, . . . ,2m−1, the restriction of h is contin-
uous and h has a limit on the bounds of this sub-interval. In
all the following, we will say that a function of Em is a pro-
totype function 2 with parameter m. For h belonging to Em
and N an even integer parameter ≥ 2, we denote HN(z) the
2mN-length filter with hN [n] coefficients given by

hN [n] = h
(

2n+1−2mN
2N

)

, n = 0, . . . ,2mN −1 , (4)

2We will carefully distinguish the prototype functions from the prototype
filters, the first ones being continuous whereas the second ones are discrete.
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and we say that HN(z) is generated by h. The points for
which the values of the function h are computed are never
some semi-integers and they constitute a regular subdivision
of the interval ]−m,+m[. If the function h is even (respec-
tively odd), the filters HN(z) are symmetrical (respectively
anti-symmetrical).

We now introduce a weighting function W (ν), real-
valued, symmetrical and positive, i.e. W (ν) ≥ 0,∀ν ∈]−
∞,∞[, and which has an inverse Fourier transform denoted
w(t). We consider the case of a prototype filter such that
hd [n] = hN [n] and we set Wd(ν) = WN(ν) = W (Nν). We de-
note JWN (hN) the weighted energy of this filter hN [n].

Theorem 1.– The weighted energy of the filter HN(z)
generated by the prototype function h(t) has a limit when
N tends towards infinity. It is denoted JW (h) and given by

lim
N→∞

JWN (hN) = JW (h) =

∫ +∞
−∞ |H( f )|2W ( f ) d f

∫ +∞
−∞ |H( f )|2 d f

(5)

=

∫ +m
−m

∫ +m
−m h(t)h(u)w(t −u) dt du

∫ +m
−m h2(t) dt

, (6)

where H( f ) is the Fourier transform of h(t) given by

H( f ) =
∫ +∞

−∞
h(t)e− j2π f t dt. (7)

Proof.– The denominator of equation (3) can be written

∫ 1
2

− 1
2

|HN(e j2πν)|2dν =
2mN−1

∑
n=0

h2
(

2n+1−2mN
2N

)

. (8)

The function h is integrable in the Riemann sense on the in-
terval [−m,+m]. The latest expression in (8) is therefore
equivalent to N

∫ +m
−m h2(t) dt . The numerator of JWN (hN) is

equal to

∫ 1
2

− 1
2

|HN(e j2πν)|2WN(ν) dν

=
1
N

∫ N
2

− N
2

|HN(e j2π f
N )|2W ( f ) d f . (9)

The expression of HN(z) allows us to consider HN(e j2π f
N )

as a Riemann sum and we have

HN(e j2π f
N ) ∼ Ne j2π f (m− 1

2N )
∫ +m

−m
h(t)e− j2π f t dt. (10)

Since h is real-valued, we also obtain the conjugate rela-
tion and the numerator of JWN (hN) is equivalent to

N
∫ N

2

− N
2

|H( f )|2W ( f ) d f . (11)

And we get (5) when N tends towards infinity.
The numerator of (5) is equal to

∫ +∞

−∞

(

∫ +m

−m
h(t)e j2π f t dt

∫ +m

−m
h(u)e− j2π f u du

)

W ( f ) d f

and it also writes
∫ +m

−m

∫ +m

−m
h(t)h(u)w(t −u) dt du. (12)

This property shows that, when the number of subbands
is sufficiently high, it is possible to maximize the weighted
energy JW (h) of the prototype function rather than the one of
the generated prototype filters HN(z).

2.2 Orthogonal and biorthogonal prototype function
Definition .– A prototype function h is orthogonal if, for all
N, the filter HN(z) is an orthogonal linear-phase prototype
filter.

Theorem 2.– Let h ∈ Em be a prototype function with
parameter m. We denote G(t,z) = ∑m−1

n=0 h(−m + 2n + t)z−n,
for 0 < t < 1

2 . Then h is an orthogonal prototype function
if and only if h is symmetrical and if there exist m functions
θi(t), 0 ≤ i ≤ m− 1, continuous on [0, 1

2 ] such that for 0 <

t < 1
2 , G(t,z) and G(t +1,z) satisfy the matrix equality

[G(t,z) G(t +1,z)] =

[Ginit(t,z) Ginit(t +1,z)]
m−1

∏
i=1

Λ(z)Θ(θi(t)) (13)

with

Λ(z) =

[

1 0
0 z−1

]

,Θ(θ) =

[

cosθ sinθ
sinθ −cosθ

]

(14)

and

[Ginit(t,z) Ginit(t +1,z)] = α [cosθ0(t)sinθ0(t)] (15)

where α is a non zero constant. When α = 1, we also have
∫ +m
−m h2(t)dt = 1.

Definition .– A prototype function h is biorthogonal if,
for all N, the filter HN(z) is a biorthogonal prototype filter.

Theorem 3.– Let h ∈ Em be a prototype function with
parameter m. We denote G(t,z) = ∑m−1

n=0 h(−m + 2n + t)z−n,
for 0 < t < 1

2 . Then h is a biorthogonal prototype function
if and only if there exist 2m+1 functions µi(t), 0 ≤ i ≤ 2m,
continuous on [0, 1

2 ] such that for 0 < t < 1
2 , G(t,z), G(t +

1,z), G(1− t,z) and G(2− t,z) satisfy the matrix equality

[G(t,z) G(t +1,z)] = [Ginit(t,z) Ginit(t +1,z)]

×
i1

∏
i=1

A(µ2i+i0(t))B(µ2i+i0+1(t))

×
j1

∏
j=1

C(µ2 j+2i1+i0(t))D(µ2 j+2i1+i0+1(t)) (16)

[

G(1− t,z)
G(2− t,z)

]

=

1

∏
j= j1,−1

z−2
D

−1(µ2 j+2i1+i0+1(t))C−1(µ2 j+2i1+i0(t))

×
1

∏
i=i1,−1

B
−1(µ2i+i0+1(t))A−1(µ2i+i0(t))

[

Ginit(1− t,z)
Ginit(2− t,z)

]

(17)
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with

A(µ) =

[

1 0
µz−1 1

]

, B(µ) =

[

1 µ
0 1

]

(18)

C(µ) =

[

z−1 0
µ 1

]

, D(µ) =

[

1 µ
0 z−1

]

(19)

and

[Ginit(t,z) Ginit(t +1,z)] = α[1 1]F0(µ0(t),µ1(t),µ2(t))F1
(20)

[

Ginit(1− t,z)
Ginit(2− t,z)

]

= αF̂1F
−1
0 (µ0(t),µ1(t),µ2(t))

[

1
1

]

(21)

with

F0(µ0,µ1,µ2) =

[

1 0
µ0 1

][

1 µ1
0 1

][

1 0
µ2 1

]

, (22)

and

F1 = C(µ3)B(µ4) and F̂1= z−1
F
−1
1 if s is odd, (23)

F1 =

[

1 0
0 1

]

and F̂1=

[

1 0
0 1

]

if s is even,

(24)

where α is still a non-zero constant and s is defined by D =
2(s+1)N −1, D being the reconstruction delay. We assume
therefore that i0 = 1 if s is even, and i0 = 3 if s is odd.

The proofs of theorems 2 and 3 directly result from
the definitions of the orthogonal and biorthogonal prototype
functions and from the lattice and lifting representation of
the orthogonal and biorthogonal prototype filters associated
to cosine modulated filter banks, cf. for example [1, 2].

3. PROTOTYPE FUNCTIONS OPTIMIZATION

3.1 Computation of the energy
Let us now focus on the numerical computation of the
weighted energy of the prototype function h. It is obtained
from the quantity

EW (h) =

∫ +m

−m

∫ +m

−m
h(t)h(u)w(t −u) du. (25)

To numerically compute the integral (25), we divide the
integration domain in squares with length 1

2 and with semi-
integer valued extremities. On each of these 16m2 small
squares, we compute the integral thanks to the n-order Gauss-
Legendre integration scheme, with fixed n, on each of the
directions u and t.

We recall that the n-order Gauss-Legendre integration
scheme allows us to evaluate the numerical value of a func-
tion f on the interval [−1,+1] thanks to the formula [9]

∫ +1

−1
f (t) dt ≈

n

∑
k=1

pk f (xk) , (26)

where xk, k = 1, . . . ,n are the n roots of the n-degree Leg-
endre polynomial, denoted Pn(x), and pk, k = 1, . . . ,n some
weights computed thanks to the formula

pk =
2(1− x2

k)

n2P2
n−1(xk)

. (27)

In practice, we choose n = 6 or n = 10. After a slight
transformation of formula (26) to adapt it to an interval with
length 1

2 , and thanks to the symmetry, the integral writes

EW (h) ≈
2mn−1

∑
i=0

2mn−1

∑
j=0

h(ui)h(u j)wi, j (28)

where wi, j are the coefficients of a symmetrical 2mn-order
matrix W which does not depend on h but only on n and
on the weighting function W . Therefore, we only evaluate
one time the value of its coefficients before optimizing the
cost function. The vector V = (h(u0),h(u1), . . . ,h(u2mn−1)),
with length 2mn is evaluated for some given values of the pa-
rameters of the optimization problem and the function EW (h)
writes EW (h) ≈ V

T
W V.

3.2 Energy optimization
We now impose the orthogonality conditions defined by the-
orem 2 and we write the prototype function with m functions
θi(t) chosen such that

θi(t) =
K−1

∑
l=0

θi,lt l i = 0, · · · ,m−1, (29)

where K − 1 is the considered degree of the interpolation
polynomial and θi,l , l = 0, . . . ,K − 1 the K corresponding
coefficients. It is worthwhile noting that this formulation is
equivalent, in continuous-time, with the so-called compact
representation that we have already presented in [7] in the
discrete-time case. The optimization problem then consists
to determine the coefficients θi,l minimizing the limit energy,
i.e. minθi,l V

T
W V.

This is a non-linear optimization problem that we
solve with the “feasible sequential quadratic programming”
method (CFSQP) described in reference [10] and taking care
of choosing different initialization points. It is clear that a
similar procedure can be used in the case of biorthogonal
prototypes replacing θi(t) by µi(t), but, to be more concise,
we just illustrate our method in the orthogonal case.

3.3 Complexity gain
A direct computation of JWN (hN) imposes mN evaluations of
the coefficients hN [n] using some angular parameters whose
expression is similar to the one given in (29) [7], and the use
of fast Fourier transforms of size greater than 4mN.

Using the limit allows us to avoid that the complexity
grows with N. Indeed, only 2mn evaluations of the prototype
functions with the help of relations (29) and (13) are neces-
sary, whereas the computation of the quadratic form leading
to EW (h) has an arithmetic complexity in O(m2n2).

4. METHOD EVALUATION

We have applied our optimization technique to the compu-
tation of prototype functions generating low-pass prototype
filters with cutoff frequency fc,N = 1

2N . The function W we
use is therefore defined by

W (ν) =

{

1 if 0 ≤ |ν | < fc = 1
2

0 else.
(30)
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The optimization of the prototype function for m = 4
yields the results given in figures 1 and 2. On the positive
part of the time axis, we notice the presence of discontinu-
ities for t = 5/2 and t = 7/2. The frequency representation
of figure 2 shows the result of the maximization of the energy
of the prototype function in the frequency interval [− 1

2 , 1
2 ].

0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4

t

h(t)

Figure 1: Time response of the prototype function for m = 4
and fc = 1

2 .
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Figure 2: Frequency response of the prototype function for
m = 4 and fc = 1

2 .

The optimal results for K = 6 are given in table 1 where
J∞ = 1− JW (h) corresponds to the optimal out-of-band en-
ergy for the prototype function and J128 the out-of-band en-
ergy of the generated filters for N = 128 subbands.

Indeed, the knowledge of an optimized orthogonal pro-
totype function h(t) allows us to instantaneously compute,
thanks to a simple sampling (cf. eq. (4)), the prototype fil-
ters HN(z) for any number of subbands N. We notice that, as
soon as N ≥ 128, the value of the out-of-band energy of the
generated filters is very close to the limit value J∞.

For N = 128 a new optimization is then made thanks to
the method presented in [7] and using as starting points the
filters obtained by sampling. The resulting optimum J∗128 pro-
vides a relative energy gain ε = (J128−J∗128)/J128 reported in
the last column of table 1. The very low values of ε show the
quasi-optimality of the results obtained by sampling. These
results can also be favorably compared to those provided by
lapped transforms (LT) [6] that for m ≤ 2 have closed-form
PR expressions for any value of N. When N = 128, with the
modulated LT, based on [6, page 178] we get an out-of-band
energy equal to 2.99×10−2 for m = 1, and for the extended
one [6, page 184], we get 7.76×10−3 for m = 2.

m J∞ J128 ε
1 1.898334×10−2 1.898132×10−2 1.10×10−10

2 2.037405×10−3 2.037340×10−3 2.37×10−11

3 3.183674×10−4 3.182363×10−4 8.01×10−6

4 8.636129×10−5 8.634476×10−5 5.46×10−6

5 1.344354×10−5 1.380102×10−5 7.60×10−4

6 2.927395×10−6 3.018592×10−6 1.48×10−2

7 1.229321×10−6 1.373668×10−6 4.70×10−3

8 2.773781×10−7 2.739358×10−7 4.54×10−3

Table 1: Out-of-band energy optimization for some m-
parameter orthogonal prototype functions and K = 6.

5. CONCLUSION

We have proposed a design method that can lead to PR fil-
ter banks for an arbitrarily high number of subbands (N). A
comparison with LT [6] illustrate its efficiency in terms of the
minimization of the out-of-band energy. Compared to the de-
sign method we proposed in [7], another advantage is, for a
given N, to significantly reduce the CPU design time.
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