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ABSTRACT
Time-variant frequency-selective channels offer multipath diversity
and Doppler diversity. MC-CDMA is able to exploit both sources
of diversity, if a code with interleaving over the duration of a data
block is applied and accurate channel state information is available
at the receiver. A time-variant channel equalization scheme based
on the Slepian basis expansion model (BEM) and a closely related
pilot based channel estimation scheme based on the finite Slepian
BEM was proposed by the authors in previous papers. The Slepian
BEMs offer significantly reduced bias compared to the well known
Fourier BEM. Exploiting the dimensionality of the Slepian BEM we
propose an upper bound for the Doppler diversity of a time-variant
channel. We present simulation results for a MC-CDMA forward
link using an enhanced simulation model for time-variant channels
with Jakes’ Doppler spectrum. Applying the finite Slepian BEM for
channel estimation we are able to take advantage of the additional
Doppler diversity offered by a time-variant channel. In other words,
the receiver performs better with increasing speed of the user.

1. INTRODUCTION

In MC-CDMA a data symbol is spread by a user specific spreading
code to take advantage of multipath diversity. Additionally, Doppler
diversity which is offered by time-variant channels, can be exploited
in MC-CDMA by convolutional coding and random interleaving
[1]. However, accurate time-variant channel state information is
required at the receiver side to exploit both sources of diversity.

In MC-CDMA the chips resulting from the spreading opera-
tion are processed by an inverse discrete Fourier transform (DFT)
to obtain an orthogonal frequency division multiplexing (OFDM)
symbol. The transmission scheme is block oriented. A block con-
sists of OFDM data symbols with interleaved OFDM pilot symbols
to allow pilot-based estimation of the time-variant channel.

We deal with frequency-selective channels which vary signifi-
cantly over the duration of a long block of OFDM symbols. How-
ever, for the duration of a single OFDM symbol the channel varia-
tion is small enough to be neglected. This, in other words, implies
a very small inter-carrier interference (ICI). Each OFDM symbol is
preceded by a cyclic prefix to avoid inter-symbol interference (ISI).

The variation in time of the wireless channel is caused by user
mobility and multipath propagation. Doppler shifts on individual
paths depend on v the user’s velocity, fC the carrier frequency,
and the scattering environment. The maximum variation in time of
the wireless channel is upper bounded by the maximum one-sided
Doppler bandwidth

BDmax
� vmax fC

c0
�

where vmax is the maximum supported velocity, and c0 the speed of
light.

The OFDM modulation transforms a time-variant frequency-
selective channel into several parallel time-variant flat-fading chan-
nels, the so called subcarriers. The variation in time of the channel
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coefficients of this subcarriers is bounded by BDmax, thus they can
be described as band-limited sequences.

Band-limited sequences are efficiently represented through the
Slepian basis expansion model (BEM) [2]. The Slepian BEM rep-
resents band-limited sequences with a minimum number of basis
functions. Slepian showed in [2] that time-limited parts of band-
limited sequences span a low-dimensional subspace. An orthog-
onal basis is spanned by the so-called discrete prolate spheroidal
(DPS) sequences. These DPS sequences have a double orthogonal-
ity property: They are orthogonal over a finite time interval and the
complete real line simultaneously. This property enables parameter
estimation without the drawbacks of windowing as in the case of
the Fourier BEM [2, Sec. 3.1.4]. The basis functions of the Slepian
BEM are matched to the maximum variation in time of the channel,
BDmax, and the length of the transmitted data block. For channel es-
timation with the help of a pilot pattern the Slepian BEM is biased
since the orthogonality of the basis functions is lost. We apply the
finite Slepian BEM which uses generalized finite discrete prolate
spheroidal (FDPS) basis functions [3, 4] to overcome this problem.
Generalized FDPS sequences are doubly orthogonal over a finite
interval and a discrete set (which resembles the pilot pattern).

Contributions:� We present an upper bound for the Doppler diversity of a time-
variant channel based on subspace arguments and the Slepian
BEM.� We give simulation results demonstrating the ability of MC-
CDMA to take advantage of Doppler diversity when the channel
estimation is based on the finite Slepian BEM. In other words,
the receiver performs better with increasing speed of the user.� We present a simulation model [5] with enhancements for low
velocities for time-variant channels with Jakes’ Doppler spec-
trum.

The rest of the paper is organized as follows:

We present the signal model for a MC-CDMA forward link in a
doubly selective channel in Sec. 2. The time-variant multi-user
detector is described in Sec. 3. The time-variant channel estimator
using the finite Slepian BEM is defined in Sec. 4. In Sec. 5 we
discuss the Doppler diversity. The simulation results are given in
Sec. 6. Finally we conclude in Sec. 7.

2. SIGNAL MODEL FOR DOUBLY SELECTIVE
CHANNELS

In MC-CDMA a data symbol is spread by a user specific spreading
code. The resulting chips are processed by an inverse DFT to obtain
an OFDM symbol. Our transmission is block oriented, a data block
consists of M � J OFDM data symbols and J OFDM pilot symbols.
Every OFDM symbol is preceded by a cyclic prefix to avoid ISI.
We consider a channel that varies significantly over the duration of
a long data block. For the duration of a single OFDM symbol the
channel variation in time can be neglected.
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Figure 1: Model for the MC-CDMA transmitter in the forward link.

The base station transmits quaternary phase shift keying
(QPSK) modulated symbols bk

�
m� with symbol rate 1�TS drawn

from the alphabet 1	
2


�
1

�
j�. Discrete time is denoted by m.

There are K users in the system, the user index is denoted by k. Each
symbol is spread by a random spreading sequence1 sssk 
 � N �1 with
elements 1	

2N


�
1

�
j�, see Fig. 1. The data symbols bk

�
m� result

from the binary information sequence χk
�
m�� � of length 2�M � J�RC

by convolutional encoding with code rate RC, random interleaving
and QPSK modulation with Gray labeling. The data symbols are
distributed over a block of length M to fulfill bk

�
m� � 0 � m 
 P

where the pilot placement is defined through the index set

P
� � �i M

J � M
2J � � i � 0 � � � � �J � 1 � � (1)

see Fig. 2.

m � 14� � �
1272

10

Figure 2: Example pilot pattern P
� 


2 �7 �12� defined by (1) for
M � 15 and J � 3.

The effects of path loss and shadow fading are ignored in this
paper αk

� 1 � k. The spread signals of all users are added together
and pilot symbols ppp

�
m� 
 � N �1 with elements p

�
m �q� are inserted,

fulfilling ppp
�
m� � 000N � m �
 P . The elements of the pilot symbols

p
�
m �q� for m 
 P and q � 0 � � � � �N � 1 are randomly chosen from

the scaled QPSK symbol set K� �2N

�

1
�

j�. Then, an N point in-
verse DFT is performed and a cyclic prefix of length G is inserted. A
single OFDM symbol together with the cyclic prefix is represented
by µµµ

�
m� 
 � P �1 and has length P � N � G chips. We write

µµµ
�
m� � TTT CPFFFH

N �SSSbbb
�
m� � ppp

�
m�� �

where SSS � �
sss1 � � � � �sssK � 
 � N �K , and bbb

�
m� � �

b1
�
m� � � � � �bK

�
m��T 
� K �1 contains the stacked data symbols for K users. The cyclic

prefix operation is carried out by

TTT CP
� � IIICP

IIIN � 
 � P �N �
1Vectors are denoted by aaa, a matrix is denoted by AAA, �AAA�

i  ! is its i" # -th
element. AAAP $Q is the P % Q upper left part of AAA, AAAT denotes the transpose,
and AAAH the conjugate transpose, respectively. diag&aaa' denotes a diagonal
matrix with entries a �i�

, tr&AAA' is the trace of AAA. IIIQ denotes the Q % Q identity
matrix, FFFQ the Q % Q unitary Fourier matrix. 111Q is a column vector with Q
ones and 000Q with Q zeros. a( is the complex conjugate of a, )a* denotes the
largest integer + , lower or equal than a + - , and .a/ the smallest integer+ , greater or equal than a + -

It replicates the last G chips of each OFDM symbol to the front.
IIICP 
 � G �N denotes the last G rows of the identity matrix IIIN 
� N �N . The unitary DFT matrix FFFN 
 � N �N has elements�

FFFN �i 01 � 1�N
e 2j2π i

1
N � i �3 � 0 � � � � �N � 1 � (2)

After parallel serial conversion according to

µµµ
�
m� � �

µ
�
mP� �µ �

mP � 1� � � � � � µ �
mP � P � 1��T

the chip stream µ
�
n� with chip rate 1�TC

� P�TS is transmitted over
a time-variant multipath fading channel with L resolvable paths.
The transmit filter, the time-variant channel and the matched re-
ceive filter are summarized by h�t �τ �. We denote the sampled time-
variant impulse response by

h� �
n� �n� � h�n�TC �nTC � �

The channel variation in time over the duration of a single OFDM
symbol is small. For an OFDM system this is directly related to
small ICI [6]. The one-sided Doppler bandwidth BD must be much
smaller than the subcarrier bandwidth ∆ f � 1� �NTC �:

BD
� ε∆ f �

where 0 4 ε 5 0 �01. Under this assumption for BD we represent the
time-variant channel through

h
�
m �n� � h� �

mP�n� �
respectively

hhh
�
m� � �

h�mPTC �0� � � � � �h�mPTC � �L � 1�TC ��T 
 � L �1

in vector notation. The time-variant frequency response ggg
�
m� 
� N �1 with elements g

�
m �q� is related to the time-variant impulse

response via

ggg
�
m� � �NFFFN �Lhhh

�
m� �

The receiver removes the cyclic prefix and performs a DFT. The
received signal vector after these two operations is given by

yyy
�
m� � diag �ggg �

m�� �SSSbbb
�
m� � ppp

�
m�� � zzz

�
m� � (3)

where complex additive white Gaussian noise with zero mean and
covariance σ2

z IIIN is denoted by zzz
�
m� 
 � N �1 with elements z

�
m �q�.
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3. TIME-VARIANT UNBIASED LMMSE FILTER

Our receiver detects the data using the received chip sequence yyy
�
m�,

the spreading matrix SSS and the time-variant frequency response ggg
�
m�

which is assumed to be known for the moment. We define the time-
variant effective spreading sequences

s̃̃s̃sk
�
m� � diag �ggg �

m��sssk � (4)

and the time-variant effective spreading matrix

S̃̃S̃S
�
m� � �

s̃̃s̃s1
�
m� � � � � � s̃̃s̃sK

�
m�� 
 � N �K �

to express the time-variant unbiased LMMSE filter

fff H
k

�
m� � s̃̃s̃sH

k
�
m� �σ2

z IIIN � S̃̃S̃S
�
m�S̃̃S̃SH �

m��21

s̃̃s̃sH
k

�
m� �σ2

z III � S̃̃S̃S
�
m�S̃̃S̃SH

�
m��21s̃̃s̃sk

�
m� �

The resulting code symbol estimates wk
�
m� � fff H

k
�
m�yyy �

m� are
demapped, deinterleaved and decoded by a BCJR decoder [7] to
obtain soft values for the transmitted data bits χ̂k

�
m�� �.

4. FINITE SLEPIAN BEM CHANNEL ESTIMATOR

The MC-CDMA signal model (3) describes a transmission which
takes place over N parallel flat-fading channels. To reflect this
we rewrite (3) as a set of equations for every subcarrier q for
q � 0� � � � �N � 1,

y
�
m �q� � g

�
m �q�d �

m �q� � z
�
m �q� � (5)

where d
�
m �q� are the elements of ddd

�
m� � SSSbbb

�
m� � ppp

�
m�. The band-

limited property of h
�
m �n� directly applies to g

�
m �q� too. This al-

lows to estimate the time-variant flat-fading subcarrier g
�
m �q� with

the finite Slepian BEM [4].

4.1 Finite Slepian BEM

The finite Slepian BEM expands the sequence g
�
m �q� in terms of

finite Slepian sequences ui
�
m�

g
�
m �q� � D21

∑
i60

ui
�
m�ψi

�
q� � (6)

where m � 0 � � � � �M � 1 and q � 0� � � � �N � 1. The finite Slepian
sequences uuui

�
m� 
 � M �1 with elements ui

�
m� are obtained by index

limiting the generalized finite discrete prolate spheroidal (FDPS)
sequences ũ̃ũui

�
m� 
 � aM �1 to

�
0 �M � 1� where a is an integer pa-

rameter a 7 1. The FDPS sequences are defined as the left singular
vectors of the matrix CCC 
 � aM �M fulfilling

CCCCCC
Hũ̃ũui

� σ2
i ũ̃ũui � i � 0 � � � � �D � 1 �

The singular values are denoted by σi and matrix CCC is defined as�
CCC �i 01 � 1

aM
sin

�
π �2a 8νDmaxM9 � 1� �i � 3 �� �aM��

sin
�
π �i � 3 �� �aM��

for i � 0� � � � �aM � 1 and 3 
 P and
�
CCC �i01 � 0 for i � 0 � � � � �aM � 1

and 3 �
 P . The normalized Doppler frequency is given by νDmax
�

BDmaxTS. The finite Slepian sequences are orthogonal over the in-
dex set P . The rank of CCC is D � 2a 8νDmaxM9 � 1 under the con-
dition 2a 8νDmaxM9 � 1 4 J. For more details and background on
the finite Slepian BEM please refer to [2–4,8,9]. The finite Slepian
sequence approximate the well known Slepian sequences [2] for
P

�
P � � 


0� � � � �M � 1�. The approximation quality is controlled
by the integer parameter a. We showed that a � 2 gives a sufficient
approximation [3, 4].

4.2 Channel Estimator

We estimate the BEM coefficients according to

ψ̂i
�
q� � 1

σ2
i

∑
m:P

y
�
m �q�b;pilot

�
m �q�ui

�
m� �

where i � 0 � � � � �D � 1 and q � 0 � � � � �N � 1. The estimated time-
variant frequency response is given by

ĝ� �
m �q� � D21

∑
i60

ui
�
m�ψ̂i

�
q� �

Further noise suppression is obtained when we exploit the correla-
tion between the subcarriers ĝ̂ĝg

�
m� � FFFN �LFFFH

N �Lĝ̂ĝg� �
m�. This finally

allows to detect the data by inserting the channel estimates ĝ̂ĝg
�
m� into

(4).

5. DOPPLER DIVERSITY AND THE SLEPIAN BEM

The finite Slepian sequences converge to the Slepian sequences for
P

�
P � and a < ∞ [9]. This is also indicated by

lim
a= ∞

�
CCC �i 01 � �

CCC�i01 � sin
�
2π �i � 3 �νDmax �

π �i � 3 � � i � 3 � 0 � � � � �M � 1 �
The eigenvectors of CCC fulfilling CCCuuu�i � λiuuu�i are the DPS sequences
u�i �

m� index limited to
�
0 �M � 1�. We call the uuu�i Slepian sequences

and use them to define the Slepian BEM corresponding to (6). The
eigenvalues λi rapidly drop to zero for i 7 D� � 2νDmaxM � 1. For
νDmaxM � c and M < ∞ this bound becomes sharp and all λi

� 1
for i 4 D� and λi

� 0 for i 7 D� [2]. Time-limited parts (with length
M) of band-limited sequences span a subspace with approximate
dimension D� � 2νDmaxM � 1.

Recently Ivrlac and Nossek defined a diversity measure
for MIMO channels [10]. We extend this measure to time-
variant flat-fading channels (respectively subcarriers). Defin-
ing gggq

� �
g

�
0�q� � � � � �g �

M � 1 �q��T we write the covariance matrix
RRR � > 


gggqgggH
q � which is independent of q if we assume the same

Doppler spectrum for every channel tap.
Definition: The Doppler Diversity for a time-variant flat-fading

channel is defined as

Ψ�RRR� � ? tr�RRR�@
RRR

@
F A 2 �

Theorem: Exploiting properties of the DPS sequences,

Ψ�RRR� � BC ∑M21
i60 λiD

∑M 21
i60 λ 2

i

EF 2 4 2νDmaxM � 1

gives an analytic upper bound for the Doppler diversity.
Proof: Matrix RRR has elements

�
RRR�i01 � rgg

�
i � 3�. For a rect-

angular power density spectrum Sgg �ν � � 1
2 �sgn�ν � νDmax � �

sgn �ν � νDmax ��, matrix RRR � 1� �2νDmax �CCC. As already noted CCC
has 2νDmaxM � 1 eigenvalues λi

� 1 for large M.
This definition gives a rigorous formulation of the observations

made in [11] using the Fourier BEM [12]. Our reasoning is based
on the Slepian BEM which additionally offers a strongly reduced
estimation bias compared to the Fourier BEM [3, 4].

6. SIMULATION RESULTS

To generate the time-variant channel realization for the frequency-
selective time-variant channel h� �

n� �n� we use the exponentially
decaying typical urban power-delay profile η

�3� from COST 259
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[13], η
�3� � 10� 2

1
10 � ∑L211G 60 HHHH10� 2

1 G
10 HHHH

2

with L � 15 resolvable paths,3 � 0 � � � � �L � 1. The autocorrelation for every channel tap is given
by

Rh
G
h

G �
ñ � 3� � η

�3�J0 �2π ñνD �P� �
Independent realizations of the following simulation model (a mod-
ified version of [5]) are used for every channel tap:

h
�
n� � 1�2

�hc
�
n� � jhs

�
n� � (7)

hc
�
n� � 2�A

A

∑
i61

cos �ψi � I cos �2πνDncosαi � φi � (8)

hs
�
n� � 2�A

A

∑
i61

sin�ψi � I cos �2πνDncos αi � φi � (9)

with

αi
� 2πi � π � θ

4A
� i � 1 �2� � � � �A � (10)

where θ , φi, and ψi are independent and uniformly distributed over��π �π � for all i. We use independent starting phases φi for every
path which is contrary to the model in [5] where a common starting
phase φ is used. With our modification the channel coefficients keep
their Rayleigh distribution in the limit νD

� 0 which is equivalent
to a block fading channel. We fix the number of interfering paths to
A � 20, see [5] for more details.

The system operates at carrier frequency fC
� 2GHz, the K �

32 users move with velocity v 
 

0 �50 �100� km/h which gives BD 



0 �93 �185� Hz and νD 
 

0 �0 �0019 �0 �0038�. The number of sub-

carriers N � 64 and the OFDM symbol with cyclic prefix has length
of P � G � N � 79. The chip rate is 1�TC

� P�TS
� 3 �84Mcps and

the data block has length M � 256 OFDM symbols with J � 10
OFDM pilot symbols. The system is designed for vmax

� 100km/h
which results in D � 5 for the finite Slepian BEM when a � 2.

For data transmission, a convolutional, non-systematic, non-
recursive, 4 state, rate RC

� 1�2 code with generator polynomial�5 �7�8 is used. The illustrated results are obtained by averaging over
2000 independent channel realizations. The mean received QPSK
symbol energy is normalized to 1 and the Eb �N0 is defined as

Eb

N0

� 1
2RCσ2

z

P
N

M
M � J

� (11)

In Fig. 3 we illustrate the forward link MC-CDMA receiver per-
formance in term of bit error rate (BER) versus Eb �N0. The plot
also shows the single user bound (SUB) which is defined as the per-
formance for one user K � 1 and a perfectly known channel ggg

�
m�.

7. CONCLUSION

We show that the finite Slepian BEM is very suitable to model a
time-variant frequency-selective channel for the duration of a data
block. The finite Slepian BEM is designed according to three sys-
tem parameters: the maximum Doppler bandwidth BDmax, the block
length M, and the pilot pattern P . A MC-CDMA system employ-
ing the finite Slepian BEM for channel equalization and estimation
can take advantage of the Doppler diversity which is offered by a
time-variant channel.
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