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ABSTRACT

This paper considers a new nonlinear filter which combines
the good properties of the Kalman filter and the particle filter.
Compared with other particle filters like Rao-Blackwellised
particle filter (RBPF), it adds a local linearization in a ker-
nel representation of the conditional density, which yields
a Kalman type correction complementing the usual particle
correction. Therefore, il can operale with much less number
of particles. It reduces the Monte-Carlo fluctuations and the
risk of divergence. The new filter is applied to the highly
nonlinear and multimodal terrain navigation problem. Simu-
lations show that it outperforms the RBPF.

1. INTRODUCTION

The Kalman filter has been a very successful and useful tool
in a wide range of engineering problems, but it has been de-
signed under the assumption of a linear model. Although its
linearization version, called extended Kalman filter (EKF),
provides a sensible solution in the nonlinear case, the EKF is
no longer optimal and can even diverge if too strong nonlin-
earities are present. The particle filter (see [4, 8, 10, 12] for
a review) has been introduced to deal with such situations.
This kind of filter has appeared under several names in the
literature, such as interacting particle (IPF) [9], Bootstrap fil-
ter and Sampling/Importance Resampling (SIR) [5], Kernel
filter [6] and Sequential Monte Carlo methods [8]. However,
the filter can be very costly to implement, as a very large
number of particles is usually needed, especially in high di-
mensional system. Further, after some filtering steps, many
particle weights can become negligible and the filter would
then poorly explore the state space as the particles cloud is
concentrated on a few points. This phenomenon is called the
particle degeneracy and often leads to filter divergence.
Recently, Musso et al. [10] have introduced the Regular-
ized Particle Filter (RPF), which is based on the regulariza-
tion of the empirical distribution associated with the particles
cloud, using the kernel density estimation method [14]. Our
paper describes and completes a new filter we have intro-
duced in [13], called Kalman-Particle Kernel Filter (KPKF),
which combines the efficiency of the extended Kalman fil-
ter (both in terms of computational cost and performance)
and the robustness of the RPF. The main idea is to linearize
the system and measurement equations around a set of par-
ticles and apply a local “Kalman type” correction to each
particle based on these linearized equations. Such correction
is complemented by the classical “particle type” correction
which consists in redistributing the weights of the particles
to reflect the change of their likelihood as a new observa-
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tion is available. The advantage of the Kalman correction
is that it tends to pull the particles toward the true system
state, thereby the redistribution of weights in the “particle
type” correction would be more spread out among the par-
ticles. This would reduce the risk of degeneracy and allow
the filter to operate reliably with much fewer particles. A
“hybrid” Kalman-particle filter known as Rao Blackwellised
particle filter (RBPF) has been proposed [3]. Our KPKF is
different and more general since it does not rely on a partial
linearity assumptions. Another recent hybrid filter called the
Gaussian Sum Particle filtering [7] also uses local Kalman
filtering similar to the KPKF. But the derivation of our filter
is different, it uses the kernel decomposition of the predic-
tive density, which justifies properly the local linearization
(see section 2). Furthermore, the KPKF uses an original re-
sampling procedure which reduces the Monte-Carlo fluctu-
ations. We present an application of our filter to the terrain
navigation problem. The KPKF is compared with the popu-
lar RBPF.

2. THE KALMAN-PARTICLE KERNEL FILTER

In the sequel, we shall consider the nonlinear stochastic dis-
crete time dynamical system:

X = F(x_ 1) +w, @Y)
v = Hy(x,) +v, @)

where x, is the unobserved state vector (1o be estimated), of
dimension 7, y, is the obscrvation vector, of dimension 7z,
F, and H, are two continuously differentiable maps from IR"
to IR” and from IR” to IR” and w, and v, denote the dynam-
ical and observation Gaussian noise vectors with associated
covariance matrices respectively S, and R,. The initial state
vector x, is assumed to be random with a known distribu-
tion. The aim is to compute the filtering density p, (%X, |¥1.4)>
which is the conditional density of the state vector at each
time k given the measurements y; ., — (¥1,---,¥;) up to time
k. For this purpose, the predictive density Pijie—1 (%, 1¥1.4-1)>
which is the conditional density of the state vector at time &
given the measurement before time &, will be needed. The
main idea of the KPKF is to approximate this density by
a mixture of Gaussian densities with small covariance ma-
trix as in the kernel density method [14] (with a small band-
width):

N
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where X;c\kq arc particles in IR”, (Jo,i‘kf1 arc probabilitics
(particles weights) and ¢ (.|P) denotes the centered Gaussian
density with covariance matrix PP. The matrices P;qkq are

assumed Lo be small.
The filter is initialized by generating sample according to
the law of x,,. Then the filter cycle consists of 3 steps.

2.1 The correction step

The main point is that starting with a predictive density of
the form (3), the filtering density of p(x,|y,.,) is also of the
same form (up to some approximations). Indeed, the joint
predictive density of x, and y, is

P (% Yilyie 1) = Dijr—1 (X ¥ 14— 1) Oy — Hi(x) Ry |
Hence, by (3) the above right hand side equals

N
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But since Pk‘kf1 is small, ¢ (x, — Xlk—1 |Pk\k71) will become

negligible as soon as x; is not close to x;'d,kl and thus in
P(x, — X1 |P;dk71)¢[yk — H,(x,)|R,], one can linearize
the map H, around X;d «_1 and approximate this term by

O (X — Xy P 1) 1Y — Vi1 + Hip(x — Xp_1) Ry

. . . @
where y,‘d 1= k(x;c‘ +_1) and H} denotes the gradient ma-
rix ol H, al the point x};‘kfl. One can then apply 0 (4) a
similar calculation as in the derivation of the Kalman (ilter
and thus obtain finally:

N
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where ) ) ) )
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¥ = HiP,, H +R, (8

The filtering density p,(x,|y,,). being proportional to
Pr(%4. ¥ ¥1.4-1)- 18 given by

N
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One sees that the filtering density p,(x,|y,,) is also a
mixture of Gaussian densities, as stated before. Note that the
covariance matrices P, of the components of this mixture
(6) are bounded above by P;;‘ 1> hence remain small if they
are so before. Finally, one can interpret the correction step as
composed of two types of correction: a Kalman-type correc-
tion defined by (5) and a particle type correction defined by
(10).

o

(10)
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2.2 The prediction step

From the filtering density (9) and the dynamical equation
(1), one gets the predictive density:

pk+1|k(xk+1 ¥ 1.0) =

N -
Y. of [ 9B~ ey (WISl (u—xi[Ph)du (1)

but since ¢ (u — x}|P%) becomes negligible as soon as u
is not close to x}, one can again make the approximation
F(u) = F_(x}) | Fj_{(u—x) where F} ; denotes the
gradient (matrix) of £ at the point x}. With this approx-
imation, the integral in the above right hand side appears
as the density of the sum of a Gaussian random vector of
mean F,_(x;) and covariance matrix S;  ; and an indepen-
dent Gaussian vector with mean zero and covariance matrix
F,. P;F;’ . Therefore

N
pk+1\k(xk+1|3’1:k) ~ Z w}é¢[xk+1 - Fk+1(x;<)|P;¢+1\k] (12)
i—=1

Thus the predictive density is still a mixture of Gaussian dis-
tribution, with the covariance matrix of the i-th component
of the mixture equal to

Pli<+1\k = F;;+1P;;Frii1 +8,. (13)

and the weights @ , ;, = @}. However, the above covariance
matrix is usually greater than that of previous step, either due
to the presence of the additive term S, ; and/or the amplifi-
cation effect of the multiplication by ¥} ;.

2.3 The resampling step

For any particle filter the weights @} degenerate with time:
eventually only a few particles have a non negligible weight.
A good measure of degeneracy is the following entropy crite-
rion (E£nt) which is the difference between the entropy of the
uniform distribution and that of the particles weights. De-
generacy occurs when Enf if greatest than some threshold 7.

N
Ent —logN + ) @'log o' (14)
i=1

On the other hand, the matrices P;; +1p can increase in

the prediction step and thus become large eventually, which
invalidates the linearization. Therefore, we shall resort to
resampling to approximate (12) by

N
pk+1\k(xk+1 Vi) =), Oy g [ — X}'l(+1\k|Pk+1‘k]
=1

wilh a dilferent sel of particles x;chl\k and weights a),iﬂ‘k
and a small matrix P, e Classical resampling [5]
(called here full resampling), in which the particle weights
are redistributed uniformly, is normally performed. But
when FEnt is less 717 (meaning that the distribution of
weights is already close to uniform), one can perform



partial resampling which rctains the samec weights to
reduce the Monte Carlo fluctuations. The rationale of
our resampling procedure will be detailed in a techni-
cal report (downloadable at www — lmc.imag.fr/lmc —
sms/Dinh — Tuan.Pham/publics — triees.html), only the
procedure is described here due to space limitation. Let
I = PN WP} Heov[E ()| @] (where cov (|
) is the sample covariance matrix relative to the probabilities
@), be the covariance matrix of the density (12) and A" be

the greatest value such that P5<+1\k — h*zﬂkﬂ‘k > 0 for all i.
A value of h > h* will be computed from 4#* according to a
certain rule (it can also be adjusted as a tuning parameter).
Then draw N random Gaussian vectors U, (i = 1,...,N) with

zero mean and covariance matrix P,i ik 2T

k1K
e Full resampling: (Ent > 1) select N particles among
F (x),...,F,. (x})) according to the probabilities

®},...,®, then add to each of them the above ran-
dom vector U; to get the new particles x; .. Then set
i _ )
wlé+1\k =1/N and P = AT g
e Partial resampling: (Enz < 1) simply add to the £, (x})
the above vector U; to obtain the new particles xf{ e
=TI

i i
Then set ("k+1\k = @ and Pk+1\k

kt1k

In practice, we found that without resampling the ma-
trices P ., and the entropy criterion increase (with a rate
depending on the application) slowly with the filter cycles.
Therefore we adopt a simple rule to perform full or partial
resampling after m filter cycles. During these cycles only
local Kalman filters are done.

3. APPLICATION TO TERRAIN NAVIGATION

The particle filters have already been applied in terrain navi-
gation [2, 11]. This application context, where the state vec-
tor is of high dimension and the filtering density is often mul-
timodal, can be considered as a good benchmark to compare
the performance of different particle filters. Therefore, we
shall apply the KPKF to this problem and compare it with
the widely used RBPF.

3.1 Problem formulation

Position, velocity and attitude information are provided by
Inertial Navigation Systems (INS), based on inertial proper-
ties of on-board sensors such as spring-mass accelerometers
and gyrometers. The inertial rotational motion angular veloc-
ity is measured by gyrometers, the specific force measured
by accelerometers. The integration of the navigation equa-
tions provides position (RLY> RINS RIVS) North, East and
Down, and velocity estimates. However, the errors of these
estimates grow with time, therefore INS must be recalibrated
periodically to maintain rcliable navigation quality [11]. The
KPKF will directly estimate the inertial error with altimeter
measurements.

3.2 Dynamical Model

The dynamical model for the inertial error 8x can be modeled
by a set of first order linear differential equations:

d|8x(r)]/dt = F(£)6x(r) +w(r)

603

where 8x(¢) is the 15 dimensional state vector to be csti-
mated, w(¢) denotes the noise term. The state vector in-
cludes 9 navigation parameters, 3 accelerometer bias param-
eters and 3 gyrometer bias parameters. The following error
model, called ¥ angle error model [1], is often used:

AV /di=(p+Q)AY — &,
d[oV]/dt——F¥ AN f+e,+6g—(p+2Q) NSV
d|8R]/dt—8V —p ASR (15)
dlb,|/di=w,
dlb,|/di=w,
where all the variables are expressed in the navigation frame
(North, East, Down), ¥ is the attitude (roll, pitch, yaw) er-
ror vector, 8V is the velocity error vector, 8R is the position
error vector (8R,,8R;,0R,), p is the angular velocity of
rotation of the navigation frame w.r.t the Earth, Q is the rota-
tion velocity of the Earth, fis the specific force, g, and g, are
the errors vectors of the accelerometers and gyrometers mea-
surements (which depend linearly on b, and by), g is the
gravity error vector. w, and w, are Gaussian noise vectors.
The notations A denotes the vector product.

3.3 Measurement Model

A radioaltimeter provides elevation measurements (the rela-
tives heights y, see Fig.1) along the aircraft path. Comparing
on board these elevations with a Digital Terrain Elevation
Data (DTED), it is possible to reconstruct the absolute po-
sition of the aircraft, if there is enough relevant information
in the elevation variation. The DTED gives the absolute el-
evation as function of the latitude/longitude. This gives the
following measurement equation:

v, = RIS + SR, — DTED(RYS 1+ SRy, RINS 1+ SR) +v,
(16

where v, is the altimeter sensor error.

Figure 1: Elevation measurement in terrain navigation

3.4 Simulation results

The initial state uncertainty is 1000 m for Ry and Rg, 100
m for Ry, Sm/s for V,, and Vg, 1m/s for V, 0.5 deg for
the attitude angles, 0.01m/ 52 for the accelerometer bias and
0.06deg/s for the gyrometers bias. The horizontal velocity
vector is 250m/s. The number of measurements is 400, the
number of particles 15000 for the RBPF is and 2500 for the



KPKF, which gives the same computing time for 2 filters.
Every 0.3 s the aircraft measures the elevation with the stan-
dard deviation fixed to 15 m. 100 Monte Carlo trials have
been performed. In averaging the results of the filters (when
they converge), we compute the RMSE (Root Mean Square
Error) for each filter. The PCRB (Posterior Cramer-Rao
Bound) has been computed. It is an universal lower bound
for the covariance matrix for any unbiased filter [15].

— RBPF
=+ KPKF
= = Cramer—Rao bound

)

error position (km)

Ry

0.2

Figure 2: RMSE for the KPKF and for the RBPF and the
PCRB for the R, error position (km)
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Figure 3: RMSE for the KPKF and for the RBPF and the
PCRB for the Vy; error velocity (m/s)

Results for the 2 filters are shown on Fig.2 and Fig.3 for
R, position and V,, velocity. For each trial, and for each mea-
surement time, the aircraft state is estimated by the weighted
mean of the particle cloud. The RPBF has yield 8 diver-
gences (out of 100) while the KPKF only 2 divergences.
We call divergence when the state estimate is consecutively
5 dmes out of the 99% confidence ellipscid given by the
PCRB. Both filters have good performances, the RMSE ap-
proach the PCRB (except for the V,, error for the RBPF).
Other simulations with a larger uncertainty initial zone have
been performed (not shown here). The KPKF also has much
less divergences than the RBPF.

604

4. CONCLUSION

A new particle filter which incorporates the features of the
Kalman filter is described. It is based on a representation of
the conditional density as a kernel approximation. This al-
lows local linearizations. An other originality of the filter is
the partial resampling which reduces the Monte Carlo fluctu-
ations. The number of resamplings is significantly reduced.
Simulations in the difficult context of terrain navigation show
that the KPKF outperforms usual particle filters like RBPF.

REFERENCES

[1] D. O. J. Benson, “A comparison of two approaches to pure-
inertial and doppler-inertial error analysis,” IEEE Transac-
tions on Aerospuace and Electronic Systems, vol. AES-7, pp.
447-455, July 1975.

[2] N. Bergman, “Recursive bayesian estimation, navigation and
tracking applications,” Ph. D. Thesis, Linkdping University,
Sweden, May 1999.

[3] G. Casella and C. P. Robert, “Rao blackwellisation of sam-
pling schemes,” Biometrika, pp. 81-94, 1996.

[4] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential
Monte-Carlo sampling methods for bayesian filtering,” Statis-
tics und Computing, vol. 10, no. 3, pp. 197-208, 2000.

[5] N.J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel ap-
proach to nonlinear/non-gaussian bayesian state estimation,”
Proceedings of the IEE, vol. 140, no. 2, pp. 107-113, 1993.

[6] M. Hiirzeler and H. R. Kiinsch, “Monte-Carlo approximations
for general state space models,” Journal of Computational and
graphical Statistics, vol. 7, no. 2, pp. 175-193, 1998.

[7] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,”
IEEE Trans. Signal Processing, vol. 51, no. 10, pp. 2592—
2601, Oct. 2003.

[8] J. S. Liu and R. Chen, “Sequential Monte-Carlo methods for
dynamics systems,” J. Amer. Statist. Assoc., vol. 93, 1998.

[S] P. D. Moral, “Nonlinear filtering: interacting particle solu-
tion,” Markov Processes and Related Fields, vol. 2, no. 4, pp.
555-580, 1996.

[10] C. Musso, N. Oudjane, and F. Legland, “Improving regular-
ized particle filter,” in Sequential Monte-Carlo Method and
Practice, N. d. F. A. Doucet and N. Gordon, Eds. New-York:
Springer, Jan. 2001, pp. 247-271.

[11] P.J. Nordlund, “Recursive estimation of three dimensional air-
craft position using terrain aid positioning,” in Proceeding of
the ICASSP Conference, Orlando, U.S.A, May 2002.

[12] D. T. Pham, “Stochastic methods for sequential data assimila-
tion in strongly nonlinear systems,” Monthly Weather Review,
vol. 129, no. 5, pp. 1194-1207, 2001.

[13] D.T.Pham, K. Dahia, and C. Musso, “A Kalman-particle ker-
nel filter and its application to terrain navigation,” in Proceed-
ing of the Fusion 2003 Conference, Cairns, Australia, July
2003.

[14] B. W. Silverman, Density Estimation for Statistics and Data
Analysis. London: Chapman & Hall, 1986.

[15] P. Tichavsky, C. H. Muravchik, and A. Nehorai, “Posteri-
ori Cramer-Rao bounds for dicrete-time nonlinear filtering,”
IEEE Trans. Signal Processing, vol. 46, no. 5, pp. 1386-1396,
May 1998.



	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Karim Dahia
	Musso Christian
	Dinh Tuan Pham
	Jean-Pierre Guibert



