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ABSTRACT
The voice timbre suffers from different forms of distorsions
in a telephone link. In this paper, we propose a new blind
equalizer for correcting these distortions, based on the com-
bination of two different methods. The first one is a blind
equalization method consisting in matching the long term
spectrum of the processed signal to a reference spectrum,
while the second one is a precompensation method, based on
the physical characteristics of transmission lines. The new
method is compared to the first one, showing a significant
gain in performance.

1. INTRODUCTION

As we want to correct voice timbre distortions, we first define
the timbre as the subjectively significant long term spectral
characteristics of the voice of a given speaker. In the ana-
log part of the PSTN (Public Switched Telephone Network)
telephone link, as schematized in figure 1, the voice timbre
suffers from two kinds of distortions.

The first one is the band-pass filtering (300-3400 Hz) at
the end-points of the customer line (telephone terminal and
line connections to the local exchange) in the transmission
and reception paths. For the PSTN, this filtering is described
on the average by the modified Intermediate Reference Sys-
tem (IRS) [1]. The frequency responses and masks of the
sending and receiving parts of the modified IRS, respectively
called sending and receiving systems, are defined in [1].

The second distortion is due to the customer’s analog
line, equivalent to a smooth low-pass filter. Its frequency
response becomes steeper as the length of the line increases.

A blind spectral equalizer, placed in the digital part of the
network (see Figure 1), was proposed in [2] to compensate
for these distortions and restore a timbre as close as possible
to that of the original speaker voice. In this paper, we propose
to enhance the performance of this equalizer by combining
it with another method, proposed in [3]. This method was
firstly developed to precompensate a transmission line based
on its physical parameters, which are not taken into account
in the first method. However, it needs the knowledge of the
length of the line, which is generally not known.

We will review the blind spectral equalizer proposed by
[2] in Section 2 and the precompensation method proposed
by [3] in Section 3. Section 4 presents the new method, com-
bining [2] and [3], which simulation results are shown in Sec-
tion 5.

2. BLIND SPECTRAL EQUALIZATION

In [2], the authors treated the problem of correcting the voice
timbre using an equalizer composed of two filters. The first
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Figure 1: Telephone link with equalizer.

one is a fixed filter, called pre-equalizer, which frequency re-
sponse is the inverse of the global response of the average
analog channel in the band [Fc−3150 Hz]. The lower cutoff
frequency Fc is fixed in order to avoid amplification of com-
ponents with low signal to noise ratio (SNR). The average
analog channel is defined as the combination of average cus-
tomer analog lines with sending and receiving systems hav-
ing frequency responses according to the nominal response
of the modified IRS.

This filter is completed by an adapted equalizer, in order
to adapt the global correction of the equalizer to various con-
ditions of transmission. The frequency response of the sec-
ond filter is computed as follows. Denoting G the frequency
response of the analog channel, |S( f )|2 the short-term power
spectral density (PSD) of the original signal s and |Y ( f )|2 the
short-term PSD of the received signal y, we have:

|Y ( f )|2 = |G( f )|2|S( f )|2 (1)

If we assume the channel to be time-invariant, the time-
averages of |Y ( f )|2 and |S( f )|2 are related by:

|Y ( f )|2 = |G( f )|2|S( f )|2 (2)

The frequency response of the adapted equalizer is there-
fore defined as:

|EQ( f )|= 1
|G( f )| =

√
γs( f )
γy( f )

(3)

where γ denotes the long-term spectrum of a signal, defined
as the time average of the short term spectrum.

Since the long term spectrum of the original voice γs( f )
is unknown, it is approximated in [2] by the average spec-
trum of speech defined in [4], called reference spectrum and
denoted by γref( f ). Moreover, since the equalizer is placed
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Figure 2: Precompensation system model

in the digital part of the network, γy( f ) is not directly avail-
able and therefore it must be derived from the input of the
equalizer, u, using:

γy( f ) = |L RX( f )|2|S RX( f )|2γu( f ) (4)

where L RX is the frequency response of the receiving line
and S RX is the frequency response of the receiving system.

The frequency response of the adapted equalizer is then:

|EQ( f )|= 1
|L RX( f )||S RX( f )|

√
γref( f )
γu( f )

(5)

Only the band Fc− 3150 Hz is equalized; the values of
|EQ| out of this band are therefore replaced by a linear ex-
trapolation of |EQ|[Fc−3150 Hz], before deriving the impulse
response of the equalizer from |EQ| by an IFFT.

Because of the roughness of the approximation γs( f ) =
γref( f ), only the global shape of this frequency response is
relevant. That is why the frequency response |EQ| must
be smoothed. This smoothing is achieved by a narrow
Hamming-windowing of the impulse response [2]. In the se-
quel, the equalizer shown here will be referenced as BSE-W,
i.e. blind spectral equalizer smoothed by a windowing of
the impulse response. This smoothing is however not ideal,
since it leads to irrelevant oscillations in the global frequency
response of the equalizer link.

3. PRECOMPENSATION BASED ON THE
CUSTOMER’S LINE MODEL

The customer’s line, shown in Figure 1, can be modelled as
a transmission line using the following system of equations:

L
∂ i
∂ t

= −Ri− ∂v
∂x

C
∂v
∂ t

= − ∂ i
∂x
−Gv (6)

where v(x, t) and i(x, t) are, respectively, the tension and the
current at a distance x from the origin, at a time t. The
line parameters are R, the resistance, L, the inductance, C,
the capacity and G the conductance per unit length. The
transmitted signal, i.e., the signal at the beginning of the
line is s(t) = v(0, t) and the signal at the end of the line is
y(t) = v(`, t) where ` is the length of the line.

In [3], the authors treated the problem of precompensat-
ing the signal transmitted through a transmission line chan-
nel modelled as in (6). The goal is to anticipate the channel
distortions in order to obtain a channel output signal, y(t),
as close as possible to the original signal s(t), as shown in
Figure 2. In [3], the transfer function of the precompensa-
tion filter, H( f ), is found by inverting the channel, i.e., by
finding the transmission line input as a function of its out-
put. Considering (6) with boundary conditions v(0, t) = s(t)
and y(t) = v(`, t) = Zi(`, t), and with zero initial conditions,

v(x,0) = ∂v
∂ t (x,0) = 0, [3] finds the following transfer func-

tion for the inverse channel:

H( f ) = cosh(`β )+
R+ iωL

Z
sinh(`β )

β
(7)

where β (ω) =
√
−LCω2 + iωRC and ω = 2π f .

H( f ) can be used in our context, presented in Section 1,
as a post-processor instead of a pre-processor, equalizing the
transmitter customer’s line. However, it needs the length of
the line, a parameter that is generally not known.

4. PROPOSED METHOD

We consider here the telephone link shown in Figure 1. The
frequency responses of the receiving system and the recep-
tion line (S RX and L RX respectively) are assumed to be
known, as in section 2, and, in addition, so are the sending
system and the parameters R, L, C and G of the line. The pre-
equalizer compensates the distorsions caused by the sending
and receiving systems and the reception line.

Under these assumptions, the frequency response of the
adapted equalizer is the inverse of the transmission line re-
sponse and is given by the precompensation method (7). The
only problem is that (7) needs the length of the line, a param-
eter that is not known. A solution is to look for the length `
for which H( f ) is the best possible approximation of the fre-
quency response of the adaptive equalizer, EQ, computed as
in Section 2, in the frequency range of interest Fc−3150Hz.
For this purpose we compare H and EQ in the cepstral do-
main, the cepstrum of a filter of frequency response H being
defined by:

CH = IDFT (ln(|H|)) (8)

We define the cost function to be minimized as the distance
between H and EQ in the space of the ten first cepstral coef-
ficients:

J =
10

∑
k=1

(
CEQ

k −CH
k

)2
(9)

where CEQ
k is the kth cepstral coefficient related to EQ and

CH
k is the kth cepstral coefficient related to H. The interest in

using this space of comparison instead of the spectral domain
lies in:

- the fact that it allows the comparison between the
shapes of the frequency responses without considering
their level, simply by excluding the cepstral coefficient
of order zero;
- the possibility of controlling the spectral resolution of
the comparison, since it depends on the number of cep-
stral coefficients involved in the comparison.
A gradient descent algorithm was implemented using the

following recursion equation:

`n+1 = `n−µ∇`J(n) (10)

where µ is the step constant and

∇`J(n) =−
11

∑
k=1

(
CEQ

k −CH
k (`n)

) ∂CH
k

∂`
(`n) (11)

The differentiation of CH with respect to ` gives:

∂CH

∂ `
= IDFT

(
1√
|H|

(
H∗ ∂H

∂`
+H

∂H∗

∂ `

))
(12)
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Figure 3: Cost function J(l)

with

∂H
∂`

= β sinh(β`)+
R+ iωL

Z
cosh(β`) (13)

Figure 3 shows a typical exemple of the cost function J
as a function of `. As we can see, the curve has only one
minimum, even though the presence of local minima can not
be completely discarded due to the random nature of EQ. For
this simulation, the customer’s line had a 10 km length.

We call this new method blind spectral equalization
based on physical parameters (BSE-P).

5. SIMULATION AND RESULTS

We have compared the performances of the BSE-W method
proposed in [2] with the BSE-P method discussed in Sec-
tion 4. The analog part of the simulated telephone link is
composed of a long transmission line, an average reception
line and sending and receiving systems having frequency
responses according to the nominal response of the modi-
fied IRS [1]. A typical telephone line has: R=168 mΩ, L=
0.7mH, C=50pF and G=0 [5]. The impedance at the end of
this line, denoted Z, is the input impedance of the hybrid de-
vice (2 wires/4 wires connection). Typical values are a 600Ω
resistive impedance or a 270Ω resistance in series with a cell
of 750Ω in parallel with a 150nF capacitor (new devices) [5].

Simulations were done using a set of 34 different speak-
ers uttering a text of approximately 20s of voice activity. The
signal was divided in slots of 256 samples, with 50% of over-
lapping. Fc was set to 200 Hz. The average line length was
considered equal to 2km while the customer’s line is 10 km
long. Its parameters values R, L, C and G are given above
and Z was considered complex.

For the BSE-W, the adaptive equalizer filter had 15 co-
efficients and was computed as in Section 2. For the BSE-P,
the algorithm given by (10) was initialized with `(0) = 2km,
given that this is the average length value of a customer line,
and the step constant, µ , was set equal to 5.103.

We have used two forms of comparison. In the first one,
we measured the performances by means of the cepstral er-

ror, CE. For each m-th signal slot, CE is defined as [6]:

CEm =

√√√√ 20

∑
k=1

(
Ci

k(m)−Ce
k(m)

)2
(14)

where Ci
k is the kth cepstral coefficient of the ideal equalizer

(inversion of the line without errors) and Ce
k is the kth cepstral

coefficient of the equalizer being tested. Figure 4 shows the
comparison between the mean cepstral errors (MCE), com-
puted as a time average of the cepstral errors, for the 34
speakers tested. We can observe that, for the large major-
ity of the cases tested, the BSE-P achieves a smaller MCE.
However, there are cases where the BSE-W has a better per-
formance. Note that the BSE-W tries to recover the voice
timbre using a ruder approach, that is afterwards refined by
the BSE-P method. Thus, if this first approach, given by EQ,
is satisfactory, the BSE-P will enhance the performance of
the system, giving a better result. However, if it is not satis-
factory, the BSE-P will try to refine something that is already
bad, leading to a worse result.

The algorithm used, given by (10), considered 10 cep-
stral coefficients. Simulations have shown that increasing
this value does not result in a better performance.

For an easier visualization of the difference between the
two methods, we also compared the systems global fre-
quency responses. Figure 5 shows an example of the result
obtained (speaker number 13). We can clearly see that the
BSE-P response is closest to the ideal response than the BSE-
W method.

Finally, Figure 6 shows the equalizers frequency re-
sponses, comparing |EQ|, given by (5), the smoothing ob-
tained using the Hamming window and the result obtained
using BSE-P. We can see that this last one almost superposes
the ideal equalizer response.

Since our goal is to restore the voice timbre, the interest
of this cepstral error reduction lies in its subjective impact.
Relationships between cepstral error and timbre restoration
were established in [6] based on formal subjective tests.
Since these relationships were established in the same con-
text and for similar cepstral and spectral distorsions, we can
use them to evaluate the perceptual meaning of these results.
According to [6], the BSE-P leads to a significant improve-
ment of the timbre restoration for at least speakers 5 and 29
(Figure 4).

6. DISCUSSION

One could object to this method that it needs the knowledge
of too many parts of the link: sending and receiving systems
and the receiver line. This strong assumption was made only
to stay in the frame of [2], in order to evaluate the gain of our
new method. In practice, few elements of the link have to be
known.

Let us consider the link schematized in Figure 7, where
the voice timbre of speaker B is to be restored for speaker A
in reception. The transmission path from B to the 2 wires / 4
wires connection can be estimated using the BSE-W method.
Then, knowing the frequency response of the sending system
of A, we can estimate the length of the analog line of A using
the BSE-P method. At last, knowing the frequency response
of the receiving system of A, we deduce the frequency re-
sponse of the complete analog channel from B to A. Thus,
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we only need to know the characteristics of A’s terminal to
offer A a restored timbre of B.

7. CONCLUSION

In this paper we developed a new blind equalization algo-
rithm for correcting the voice timbre distortions in a tele-
phone link. To do so, we based ourselves on the precompen-
sation method proposed by [3]. Since this method needs the
knowledge of the line length, we developed a blind way to
find this information using the blind spectral equalizer pro-
posed in [2] and a cost function which minimization leads to
a good estimation of the line length.

The comparison of this new method with the one pro-
posed in [2] showed a significant gain in performance and
substantial improvement in the voice timbre restoration for
the large majority of the cases tested.
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