
 MIXED-RADIX FFT FOR IMPROVING CACHE PERFORMANCE

Ryszard Stasiński, Jacek Potrymajło
Institute of Electronics and Telecommunications, Poznań University of Technology

Piotrowo 3A, PL-60195 Poznań, Poland (Europe)
phone: +48 61 6652 631, fax: +48 61 6652 572

email: rstasins@et.put.poznan.pl, jpotrym@et.put.poznan.pl

ABSTRACT
The increasing difference between processors and dynamic
memories speeds causes that the problem of cache perform-
ance is an issue of ever growing importance. In the paper it
is proposed to increase cache performance in FFT programs
by implementing mixed-radix FFTs for N=2rKs, where K is
an odd number, and Ks is close, but smaller than some power
of 2. This guarantees that data samples processed in one
FFT butterfly have different cache addresses, hence, the
number of cache conflicts is substantially diminished. Com-
puter simulations for Ks=243, and 125 show that this is the
case, indeed, and that in spite of higher numbers of arith-
metical operations for conservative cache miss delays the
mixed-radix FFTs do perform better than the radix-2 FFT.

1. INTRODUCTION

One of aims of computer technology is to give the user an
impression that a computer has unlimited memory all words
of which are equally easy accessible, hence, memory reads
and writes do not influence algorithms complexity. This has
been reflected in the RAM machine model [1], which states
that a computer consists of a sequential processor and the
random-access memory. Because of technological efforts
done for supporting the illusion, for problems that do not
require excessive amounts of memory the RAM machine
model is still a fairly good approximation of even the most
sophisticated up-to-date sequential computers.

Nevertheless, if the compared algorithms have similar
performance, the RAM machine model could fail. This is
caused by the fact that firstly, modern computers have hier-
archical organization of memory, secondly, even in one-
processor machines computations are divided into parallel
streams [2]. In general, FFT algorithms are very well suited
for parallel computations. On the other hand, they are
strongly affected by sophisticated memory organization, and
in particular, by cache addressing schemes. This problem
has been analyzed in papers [3], [4], where it has been
pointed out that for obtaining the best results FFT computa-
tion should be performed depth-first; in [4] the use of recur-
sive FFT function has been suggested. Another idea has
been presented in [5], where special data alignment consist-
ing in inserting empty records among data blocks has been
proposed. The alignment causes that samples processed in
one FFT butterfly have different cache addresses, which
minimizes cache conflicts, for explanation see section 3.

In this paper an approach to minimization of cache
misses in FFT computation based on the use of mixed-radix
FFT [6] is proposed. Namely, the most critical first stages of
FFT are computed using radix-K FFT for odd K, the number
of such stages s is chosen in such a way that Ks is close but
smaller than some power of 2, 243- and 125-point FFTs are
considered. In section 2 general description of caches is
given. Section 3 describes why large radix-2 FFT algorithms
are prone to cache misses, and why radix-K are not. Simula-
tions of algorithms are reported in section 4. It is shown that
indeed, in spite of higher arithmetical complexity for conser-
vative cache miss penalties mixed-radix FFTs are more time-
efficient than the radix-2 FFT, which is due to important re-
duction of cache misses.

2. CACHE

The cache is a buffer memory between processor registers
and main computer memory [2]. Its main purpose is to re-
duce the time of main memory loads and stores, as read and
write times of today processors are many times shorter than
those for dynamic RAM (DRAM) chips. Caches are faster,
but smaller (more expensive) than main memories, but not
to the extent the internal processor registers are, they form
an intermediary memory hierarchy level (or levels [2]).
Caches are invisible for a programmer, they store copies of
memory words that are likely to be used by a program, or
loaded as program instructions.

The simplest cache control is based on direct mapping of
memory addressing space into cache addressing space. When
a datum is required by a processor, or program instruction
loaded for the first time, apart from moving it to the proces-
sor register it is also stored in the cache at the address ob-
tained by computing the residue of datum (or instruction)
memory address modulo the size of the cache:

cache address = memory address modulo cache_size (1)

In fact, the address computation can be somewhat more
complicated, as in majority of caches loading is done in
blocks. Next read or write of the datum (or instruction) will
take place between processor and cache, hence, it will be
much faster. Notice also that if data or program form a con-
tiguous cluster in memory, then new data/instruction load
does not erase old ones (no conflict), unless the cluster is
greater than the cache. The cache concept works as typical
programs and associated with them data indeed exhibit tem-

1525

poral and spatial locality [2], i.e. data and instruction loca-
tions are reused several times, and form concentrated clusters
in memory.

When the spatial locality of a program is poor and
highly structured, the probability of data/instruction conflict
is quite high as the address mapping formula above is too
rigid. Theoretically, the remedy is to use the associative
cache, for which any main memory location can be placed
anywhere in the cache. Such caches require, however, quite
big circuitry for searching requested data in the cache, hence
they are usually very small. They are several compromise
solution [2], the widely used one, often serving as a bench-
mark, is the m-way associative cache, m is small. This is the
variant of direct-mapped cache composed of associative
caches of size m, the address mapping formula is:

cache address = memory address modulo (cache_size /m)

When a new block stored in the cache has the same cache
address as an old one, then usually no conflict occurs, there is
a place for m blocks having the same cache address.

 If searched data is in the cache, then we have a cache
hit, in the opposite case a cache miss take place. In the fastest
computers a cache miss may result in program delays lasting
even several hundreds of clock cycles [2], i.e. significantly
more than the execution time of a floating-point arithmetical
operation.

3. FFT AND DATA CACHE

The radix-2 FFT is built up from 2-point operations called
butterflies, which for decimation-in-frequency FFT are as
follows:

x(n) ← x(n) + x(offset+n),
x(offset+n) ← [x(n) – x(offset+n)]W(n),

where W(n) is the rotation factor, offset depends on the stage
of algorithm. Namely, an N-point radix-2 transform consists
of log2N stages, and in the first stage offset=N/2, in the sec-
ond offset=N/4, then N/8,...,2,1, of course, they are N/2 but-
terflies in each stage. Notice that as N is a power of 2, offset
is also a power of 2.This means that for sufficiently large
transform sizes in the first steps of the algorithm x(n) and
x(offset+n) have the same address in direct mapping cache
(1). This may cause severe degradation of algorithm per-
formance due to cache misses. Consider computation of a
simplified butterfly (complex arithmetic and multiplication
by rotation factor not implemented for clarity):

r1 ← x(offset+n) # cache miss, r0, r1, r2 are registers;
r0 ← x(n) # cache miss and conflict, x(offset+n)

erased;
r2 ← r0 + r1 # first butterfly operation;
r1 ← r0 – r1 # second operation;
x(n) ← r2 # cache hit;
x(offset+n) ← r1 # cache miss and conflict, x(n) erased.

As can be seen, we have here three cache misses, a great
burden for a program consisting of only two arithmetic op-

erations. Notice that the conflicts are avoided for associative
caches, and the number of misses diminish to two, the 2-
way associative cash suffices.

It is then proposed to compute these first critical stages
of FFT not using the radix-2 butterflies, but radix-K ones for
some odd K. This means that we are implementing the
mixed-radix FFT algorithm [6] of size N=2rKs. In radix-K
FFTs for odd K index offsets are multiplicities of the number
K, which are mutually prime with the cache size. This means
that cache addresses of FFT butterfly samples are pseudo-
random, hence, they are no conflicts. There is a drawback of
such a solution, the sub-transform size Ks does not match
precisely the cache size. That is why it is proposed to use
FFT modules of size Ks close, but slightly smaller than some
powers of 2, the most obvious choices are for K=3:
35=243<256=28, and for K=5: 53=125<128=27. The second
proposal results in “decimal” sizes of the computed trans-
form, they are equal to multiplicities of N=1000. It should be
noted that the radix-3 and radix-5 FFTs require somewhat
more arithmetical operations to be computed than the radix-2
one of comparable size, For very large transform sizes the
radix-3 requires approximately 35% more arithmetical opera-
tions than the radix-2 one, while for the radix-5 FFT there is
approximately 17% more such operations.

4. SIMULATIONS

We choose Simics simulator for our research [7]. Simics is
an efficient, system level, instruction set simulator. This
software simulates the target system at the level of individ-
ual instructions which are executed one at a time. This is
lowest level of hardware that software can acces. Simulating
at this level allows simulator to be system level simulator.
This term means that simulator models a target computer at
the level of operating system. Simics models interface to
buses, interrupt controllers, disks etc. Those possibilities
allow to check different concepts before implementing them
in hardware. This is a very efficient tool for computer archi-
tecture research or operating system development.

For our research we choose cache parameters as follow:
data cache line was 32 bytes. We could not use shorter cache
line because original cache simulation method in Simics
requires 32 bytes data cache line. Because of this it has been
necessary to make a little change in structure representing a
complex number. We had to fill structure to 32 bytes size
with two 8 byte numbers. This change was only for ensuring
that each cache line contains only one complex number. Our
cache is direct-mapped and has 256 lines, which conforms
with chosen radix-3 FFT module size, 243 points. Write
strategy is write-back. We choose a model for the processor
266 MHz Pentium II, one cache level for easy interpretation
of results. To obtain time of algorithm execution it was
necessary to assume some access time to cache in case of hit
and some access time to main memory in case of cache
miss. Read miss was set to 53 cycles similarly as write miss.
Read hit penalty was set to 5 cycles and write hit was set to
3 cycles, which is similar to cache parameters of Pentium II
processor. In our system there was instruction cache too, but
it was not important for our research.

1526

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

3,50E+07

4,00E+07

0 1000 2000 3000 4000 5000 6000 7000 8000

rad-2
rad-2 x rad 2
rad-3 x rad 2
rad-5 x rad-2

Figure 1 Number of processor cycles as a function of FFT size

To ensure that operating system had not have influence
on result, we tested algorithm without operating system. Our
program consists of some functions that initiate environment
and main function which call function implementing algo-
rithm. Compiled and linked program is loaded to memory
using GRUB operating system bootloader.

Simulation results for radix-2 FFT are presented in Ta-
ble 1, while those for mixed-radix FFTs of size N=243·2r,
and N=125⋅2r in Tables 2 and 3, respectively, and summa-
rized in Figure 1. In Table 4 data for radix-2 FFT version
which first 8 stages are realized as 256-point radix-2 FFT
are provided. The latter algorithm has exactly the same logi-
cal organization as mixed-radix FFTs, only 243-point (or
125-point) module is replaced by the 256-point one. The
FFTs are decimation-in-frequency algorithms, each one is
followed by digit-reverse function for restoring natural order
of data. As can be seen, indeed, the use of non-radix-2 but-
terflies in first FFT stages resulted in important reduction of
cache misses, and hence, in improved performance of the
algorithm, with possible exception of FFT sizes close to 211
for N=243·2r. It should be underlined that this result has
been obtained in spite of higher arithmetical complexity of
the radix-3 and radix-5 FFT, if compared to the radix-2 FFT
one. Moreover, the second version of the radix-2 FFT shows
that mixed-radix organization of an FFT program results in
its inferior performance, if compared to the straightforward
one, which makes the result even more convincing.

5. CONCLUSION

A new technique for improving cache performance in
FFT programs has been proposed in the paper. It consists in
replacing first, the most critical stages of radix-2 FFT with
stages of a radix-K, one, where K is an odd number. In this
way there are no cache conflicts between samples of an FFT
butterfly, hence, an important source of cache misses in
radix-2 FFT avoided. The number of stages s is chosen in
such a way, that blocks of FFT samples almost fill the cache,

i.e. Ks is close but smaller than a power of 2. Simulation re-
sults show that indeed, mixed-radix FFTs have lower time
complexities than the radix-2 FFT, mainly due to important
reduction of cache misses. This result is obtained in spite of
the fact that the used radix-K modules: 243-point, and 125-
point ones, require more arithmetical operations per data
sample than the 256-point, and 128-point ones. This is a one
more proof for the statement that in times of hierarchical
computer memories the concept of algorithm complexity
should be rethought [2].

REFERENCES
[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, ‘’The design and

analysis of computer algorithms’’, Addison-Wesley,
1974.

[2] J.L. Hennessy, D.A. Patterson, ‘’Computer Architecture,
a Quantitative Approach’’, 3nd edition., Elsevier, Mor-
gan-Kaufmann, 2003, see also Internet resources linked
with the book.

[3] R. Stasiński, “Efficiency of radix-K Transforms on com-
puter with cache”, Proc. ICASSP'99, Phoenix AZ, vol.
III, pp. 1525-1528, 1999.

[4] M. Frigo, Ch. E. Leiserson, H. Prokop, S. Ramachandran,
„Cache-oblivious algorithms“, Proc. 40th Annual Symp.
on Foundations of Comp. Science (FOCS), pages 285-
297, 1999.

[5] P.R. Panda, H. Nakamura, N. D. Dutt, A. Nicolau, „A
data alignment technique for improving cache perform-
ance”, Proc. ICCD’97, Austin, TX, 1997.

[6] H.J. Nussbaumer, ‘’Fast Fourier transform and convolu-
tion algorithms’’, Springer-Verlag, 1981.

[7] P. Magnusson, B. Werner, “Efficient Memory Simulation
in SimICS”, 28th Proc. Annual Simulation Symp., Santa
Barbara, CA, pp. 62-73, 1995, Internet link:
http://www.simics.net.

1527

N rm r %rm wm w %w cycles
1024 19790 323030 6,13 4098 91491 4,48 3605423
2048 44832 705403 6,36 11304 199319 5,67 8066526
4096 100325 1530752 6,55 28871 431771 6,69 17864207
8192 221664 3299013 6,72 70213 929023 7,56 39154254

Table 1Cache performance for radix-2 FFT – rm-is the number of read misses, r is
the number of read transactions, wm-is the number of read misses, w is the number

of read transactions.

N rm r %rm wm w %w cycles
243x4 8606 367596 2,34 3552 96228 3,69 3501991
243x8 36102 802009 4,50 5192 206420 2,52 8369743
243x16 40841 1758072 2,32 3406 447580 0,76 16182218
243x32 56402 3778819 1,49 7205 953714 0,76 33374235

Table 2 Cache performance for mixed radix FFT (radix-3 x radix-2).

N rm r %rm wm w %w cycles
125x4 3704 135668 2,73 1553 37961 4,09 1357687
125x8 6283 305703 2,06 1774 83038 2,14 2880089
125x16 11026 690648 1,60 1575 183942 0,86 6254498
125x32 24940 1516413 1,64 3529 398000 0,89 13800735
125x64 61551 3326318 1,85 8946 864116 1,04 30733768

Table 3 Cache performance for mixed-radix FFT (radix-5 x radix-2).

N rm r %rm wm w %w cycles
256x4 11772 387050 3,04 3429 110842 3,09 3691977
256x8 27902 844494 3,30 8993 236270 3,81 8216613
256x16 660033 1851286 3,57 23633 509142 4,64 18413113
256x32 147176 3979302 3,70 55739 1079974 5,16 40026545

Table 4 Cache performance for mixed-radix FFT (radix-2 x radix-2).

1528

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Ryszard Stasinski
	Jacek Potrymajlo

