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ABSTRACT 
The increasing difference between processors and dynamic 
memories speeds causes that the problem of cache perform-
ance is an issue of ever growing importance. In the paper it 
is proposed to increase cache performance in FFT programs 
by implementing mixed-radix FFTs for N=2rKs, where K is 
an odd number, and Ks is close, but smaller than some power 
of 2. This guarantees that data samples processed in one 
FFT butterfly have different cache addresses, hence, the 
number of cache conflicts is substantially diminished. Com-
puter simulations for Ks=243, and 125 show that this is the 
case, indeed, and that in spite of higher numbers of arith-
metical operations for conservative cache miss delays the 
mixed-radix FFTs do perform better than the radix-2 FFT.  

1. INTRODUCTION 

One of aims of computer technology is to give the user an 
impression that a computer has unlimited memory all words 
of which are equally easy accessible, hence, memory reads 
and writes do not influence algorithms complexity. This has 
been reflected in the RAM machine model [1], which states 
that a computer consists of a sequential processor and the 
random-access memory. Because of technological efforts 
done for supporting the illusion, for problems that do not 
require excessive amounts of memory the RAM machine 
model is still a fairly good approximation of even the most 
sophisticated up-to-date sequential computers. 

Nevertheless, if the compared algorithms have similar 
performance, the RAM machine model could fail. This is 
caused by the fact that firstly, modern computers have hier-
archical organization of memory, secondly, even in one-
processor machines computations are divided into parallel 
streams [2]. In general, FFT algorithms are very well suited 
for parallel computations. On the other hand, they are 
strongly affected by sophisticated memory organization, and 
in particular, by cache addressing schemes. This problem 
has been analyzed  in papers [3], [4], where it has been 
pointed out that for obtaining the best results FFT computa-
tion should be performed depth-first; in [4] the use of recur-
sive FFT function has been suggested. Another idea has 
been presented in [5], where special data alignment consist-
ing in inserting empty records among data blocks has been 
proposed. The alignment causes that samples processed in 
one FFT butterfly have different cache addresses, which 
minimizes cache conflicts, for explanation see section 3. 

In this paper an approach to minimization of cache 
misses in FFT computation based on the use of mixed-radix 
FFT [6] is proposed. Namely, the most critical first stages of 
FFT are computed using radix-K FFT for odd K, the number 
of such stages s is chosen in such a way that Ks is close but 
smaller than some power of 2, 243- and 125-point FFTs are 
considered. In section 2 general description of caches is 
given. Section 3 describes why large radix-2 FFT algorithms 
are prone to cache misses, and why radix-K are not. Simula-
tions of algorithms are reported in section 4. It is shown that 
indeed, in spite of higher arithmetical complexity for conser-
vative cache miss penalties mixed-radix FFTs are more time-
efficient than the radix-2 FFT, which is due to important re-
duction of cache misses. 

2. CACHE 

The cache is a buffer memory between processor registers 
and main computer memory [2]. Its main purpose is to re-
duce the time of main memory loads and stores, as read and 
write times of today processors are many times shorter than 
those for dynamic RAM (DRAM) chips. Caches are faster, 
but smaller (more expensive) than main memories, but not 
to the extent the internal processor registers are, they form 
an intermediary memory hierarchy level (or levels [2]). 
Caches are invisible for a programmer, they store copies of 
memory words that are likely to be used by a program, or 
loaded as program instructions. 

The simplest cache control is based on direct mapping of 
memory addressing space into cache addressing space. When 
a datum is required by a processor, or program instruction  
loaded for the first time, apart from moving it to the proces-
sor register it is also stored in the cache at the address ob-
tained by computing the residue of datum (or instruction) 
memory address modulo the size of the cache: 

cache address = memory address modulo cache_size    (1)  

In fact, the address computation can be somewhat more 
complicated, as in majority of caches loading is done in 
blocks. Next read or write of the datum (or instruction) will 
take place between processor and cache, hence, it will be 
much faster. Notice also that if data or program form a con-
tiguous cluster in memory, then new data/instruction load 
does not erase old ones (no conflict), unless the cluster is 
greater than the cache. The cache concept works as typical 
programs and associated with them data indeed exhibit  tem-
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poral and spatial locality [2], i.e. data and instruction loca-
tions are reused several times, and form concentrated clusters 
in memory.  

When the spatial locality of a program is poor and 
highly structured, the probability of data/instruction conflict 
is quite high as the address mapping formula above is too 
rigid. Theoretically, the remedy is to use the associative 
cache, for which any main memory location can be placed 
anywhere in the cache. Such caches require, however, quite 
big circuitry for searching requested data in the cache, hence 
they are usually very small. They are several compromise 
solution [2], the widely used one, often serving as a bench-
mark, is the m-way associative cache, m is small. This is the 
variant of direct-mapped cache composed of associative 
caches of size m, the address mapping formula is: 

cache address = memory address modulo (cache_size /m) 

When a new block stored in the cache has the same cache 
address as an old one, then usually no conflict occurs, there is 
a place for m blocks having the same cache address. 

 If searched data is in the cache, then we have a cache 
hit, in the opposite case a cache miss take place. In the fastest 
computers a cache miss may result in program delays lasting 
even several hundreds of clock cycles [2], i.e. significantly 
more than the execution time of a floating-point arithmetical 
operation. 

3. FFT AND DATA CACHE 

The radix-2 FFT is built up from 2-point operations called 
butterflies, which for decimation-in-frequency FFT are as 
follows: 

x(n)             ←    x(n) +  x(offset+n), 
x(offset+n)  ←    [x(n) – x(offset+n)]W(n), 

where W(n) is the rotation factor, offset depends on the stage 
of algorithm. Namely, an N-point radix-2 transform consists 
of log2N  stages, and in the first stage offset=N/2, in the sec-
ond offset=N/4, then N/8,...,2,1, of course, they are N/2 but-
terflies in each stage. Notice that as N is a power of 2, offset 
is also a power of 2.This means that for sufficiently large 
transform sizes in the first steps of the algorithm x(n) and 
x(offset+n) have the same address in direct mapping cache 
(1). This may cause severe degradation of algorithm per-
formance due to cache misses. Consider computation of a 
simplified butterfly (complex arithmetic and multiplication 
by rotation factor not implemented for clarity): 

r1 ←  x(offset+n) # cache miss, r0, r1, r2 are registers; 
r0 ←  x(n) # cache miss and conflict, x(offset+n) 

# erased;  
r2 ←  r0 + r1 # first butterfly operation; 
r1 ←  r0 – r1 # second operation; 
x(n) ←  r2 # cache hit; 
x(offset+n) ←  r1 # cache miss and conflict, x(n) erased. 

As can be seen, we have here three cache misses, a great 
burden for a program consisting of only two arithmetic op-

erations. Notice that the conflicts are avoided for associative 
caches, and the number of misses diminish to two, the 2-
way associative cash suffices. 

It is then proposed to compute these first critical stages 
of FFT not using the radix-2 butterflies, but radix-K ones for 
some odd K. This means that we are implementing the 
mixed-radix FFT algorithm [6] of size N=2rKs. In radix-K 
FFTs for odd K index offsets are multiplicities of the number 
K, which are mutually prime with the cache size. This means 
that  cache addresses of FFT butterfly samples are pseudo-
random, hence, they are no conflicts. There is a drawback of 
such a solution, the sub-transform size Ks does not match 
precisely the cache size. That is why it is proposed to use 
FFT modules of size Ks close, but slightly smaller than some 
powers of 2, the most obvious choices are for K=3: 
35=243<256=28, and for K=5: 53=125<128=27. The second 
proposal results in “decimal” sizes of the computed trans-
form, they are equal to multiplicities of N=1000. It should be 
noted that the radix-3 and radix-5 FFTs require somewhat 
more arithmetical operations to be computed than the radix-2 
one of comparable size, For very large transform sizes the 
radix-3 requires approximately 35% more arithmetical opera-
tions than the radix-2 one, while for the radix-5 FFT there is 
approximately 17% more such operations. 

4. SIMULATIONS 

We choose Simics simulator for our research [7]. Simics is 
an efficient, system level, instruction set simulator. This 
software simulates the target system at the level of individ-
ual instructions which are executed one at a time. This is 
lowest level of hardware that software can acces. Simulating 
at this level allows simulator to be system level simulator. 
This term means that simulator models a target computer at 
the level of operating system. Simics models interface to 
buses, interrupt controllers, disks etc. Those possibilities 
allow to check different concepts before implementing them 
in hardware. This is a very efficient tool for computer archi-
tecture research or operating system development. 

For our research we choose cache parameters as follow: 
data cache line was 32 bytes. We could not use shorter cache 
line because original cache simulation method in Simics 
requires 32 bytes data cache line. Because of this it has been 
necessary to make a little change in structure representing a 
complex number. We had to fill structure to 32 bytes size 
with two 8 byte numbers. This change was only for ensuring 
that each cache line contains only one complex number. Our 
cache is direct-mapped and has 256 lines, which conforms 
with chosen radix-3 FFT module size, 243 points. Write 
strategy is write-back. We choose a model for the processor  
266 MHz Pentium II, one cache level for easy interpretation 
of results. To obtain time of algorithm execution it was 
necessary to assume some access time to cache in case of hit 
and some access time to main memory in case of cache 
miss. Read miss was set to 53 cycles similarly as write miss. 
Read hit penalty was set to 5 cycles and write hit was set to 
3 cycles, which is similar to cache parameters of Pentium II 
processor. In our system there was instruction cache too, but 
it was not important for our research.  
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Figure 1 Number of processor cycles as a function of  FFT size 

To ensure that operating system had not have influence 
on result, we tested algorithm without operating system. Our 
program consists of some functions that initiate environment 
and main function which call function implementing algo-
rithm. Compiled and linked program is loaded to memory 
using GRUB operating system bootloader. 

Simulation results for radix-2 FFT are presented in Ta-
ble 1, while those for mixed-radix FFTs of size N=243·2r, 
and N=125⋅2r in Tables 2 and 3, respectively, and summa-
rized in Figure 1. In Table 4 data for radix-2 FFT version 
which first 8 stages are realized as 256-point radix-2 FFT 
are provided. The latter algorithm has exactly the same logi-
cal organization as mixed-radix FFTs, only 243-point (or 
125-point) module is replaced by the 256-point one. The 
FFTs are decimation-in-frequency algorithms, each one is 
followed by digit-reverse function for restoring natural order 
of data.  As can be seen, indeed, the use of non-radix-2 but-
terflies in first FFT stages resulted in important reduction of 
cache misses, and hence, in improved performance of the 
algorithm, with possible exception of FFT sizes close to 211 
for N=243·2r. It should be underlined that this result has 
been obtained in spite of higher arithmetical  complexity of 
the radix-3 and radix-5 FFT, if compared to the radix-2 FFT 
one. Moreover, the second version of the radix-2 FFT shows 
that mixed-radix organization of an FFT program results in 
its inferior performance, if compared to the straightforward 
one, which makes the result even more convincing. 

5. CONCLUSION 

A new technique for improving cache performance in 
FFT programs has been proposed in the paper. It consists in 
replacing first, the most critical stages of radix-2 FFT with 
stages of a radix-K, one, where K is an odd number. In this 
way there are no cache conflicts between samples of an FFT 
butterfly, hence, an important source of cache misses in 
radix-2 FFT avoided. The number of stages s is chosen in 
such a way, that blocks of FFT samples almost fill the cache, 

i.e. Ks is close but smaller than a power of 2. Simulation re-
sults show that indeed, mixed-radix FFTs have lower time 
complexities than the radix-2 FFT, mainly due to important 
reduction of cache misses. This result is obtained in spite of 
the fact that the used radix-K modules: 243-point, and 125-
point ones, require more arithmetical operations per data 
sample than the 256-point, and 128-point ones. This is a one 
more proof for the statement that in times of hierarchical 
computer memories the concept of algorithm complexity 
should be rethought [2].  
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N rm r %rm wm w %w cycles 
1024 19790 323030 6,13 4098 91491 4,48 3605423 
2048 44832 705403 6,36 11304 199319 5,67 8066526 
4096 100325 1530752 6,55 28871 431771 6,69 17864207 
8192 221664 3299013 6,72 70213 929023 7,56 39154254 

Table 1Cache performance for radix-2 FFT – rm-is the number of read misses, r is 
the number of read transactions, wm-is the number of read misses, w is the number 

of read transactions. 

N rm r %rm wm w %w cycles 
243x4 8606 367596 2,34 3552 96228 3,69 3501991 
243x8 36102 802009 4,50 5192 206420 2,52 8369743 
243x16 40841 1758072 2,32 3406 447580 0,76 16182218 
243x32 56402 3778819 1,49 7205 953714 0,76 33374235 

Table 2 Cache performance for mixed radix FFT (radix-3 x radix-2). 

N rm r %rm wm w %w cycles 
125x4 3704 135668 2,73 1553 37961 4,09 1357687 
125x8 6283 305703 2,06 1774 83038 2,14 2880089 
125x16 11026 690648 1,60 1575 183942 0,86 6254498 
125x32 24940 1516413 1,64 3529 398000 0,89 13800735 
125x64 61551 3326318 1,85 8946 864116 1,04 30733768 

Table 3 Cache performance for mixed-radix FFT (radix-5 x radix-2). 

N rm r %rm wm w %w cycles 
256x4 11772 387050 3,04 3429 110842 3,09 3691977 
256x8 27902 844494 3,30 8993 236270 3,81 8216613 
256x16 660033 1851286 3,57 23633 509142 4,64 18413113 
256x32 147176 3979302 3,70 55739 1079974 5,16 40026545 

Table 4 Cache performance for mixed-radix FFT (radix-2 x radix-2). 
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