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ABSTRACT

The paper gives a new regularization criterion for the re-
gression techniques where the overfitting problem may oc-
cur. The proposed criterion is not a penalization term cali-
brated from prior information but a penalization term calcu-
lated from the training set. It appears as an extension of the
classic Tikhonov regularization constraint. It is shown that
the statistical characterization of this penalization is possi-
ble. This characterization leads to an optimization criterion
which does not depend on any hyperparameter.

The method is applied to a parametric regression technique
(polynomial regression) and to a nonparametric regression
technique (kernel approximation). For the first technique,
overfitting is avoided. For the second one, the method gives
an estimation of the kernel spread close to the optimal value.

1. PROBLEM STATEMENT

Consider an unknown process f* : [a,b] — R which is esti-
mated from a training set D,, = {(y;, zi)i=1.... } resulting from

oI 20
zi=f" i)+ &,

where &; is a Gaussian additive noise independent with f*.
The goal is to find an estimation f of f* which limits the risk
of overfitting [3]. In machine learning techniques, this risk
may be evaluated by the integrated loss:
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Various techniques have been proposed for coping with the
overfitting problem. Most of them fall into one of two ca-
tegories: model selection [4] and regularization [5, 6]. In
this paper, we introduce a new regularization criterion based
on variability that automatically chooses the complexity of
models: greater is the variability of the training set, greater
is the allowed model complexity (see author’s previous work
in [7]).

The new criterion may be applied to parametric and nonpara-
metric regression techniques. In this paper, it is illustrated on
two particular techniques:

e apolynomial regression technique: /™ is modeled by one
function in the class {Pg}g.pa+1 of polynomials of de-
gree d:

d
Po(y) =y Buf
=0

e a kernel technique: f* is approximated by the nonpara-
metric estimator of Nadaraya-Watson [8, 9]:
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K(y) is the Gaussian kernel: K(y) = exp (—)}2

The spread /4 carries out a tradeoff between a smooth
estimator (large /) and an unbiased one (small £).

Coefficients 8 and / have to be estimated for both techniques.
Section 2 gives the principle of the proposed approach to es-
timate them. It is applied in section 3 to polynomial regres-
sion and kernel approximation with training sets obtained by
uniform and random sampling.

2. PROPOSED APPROACH

The suggested regularization consists in considering only

models with a regularity equivalent to the regularity of the

training set: models Py or ghNW(D")

with 8 =0 or A.

The regularity of the training set (resp. model) is viewed as
a measure of its variability: a training set (resp. model) is
regular if it has a low variability. The variability criterion of
a training set must only depend on the variations of /* and
thus not be very sensitive to the noise.

The variability of a function g : [a,b] — R was defined by a
classic criterion related to its fluctuations [10]:

Vie(g) =/b (dfg)y dy 3)

The variability criterion proposed for the training set is an
approximation of the integral in equation (3):

, indifferently noted fg

n—1 2
Zj —Zj
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We have assumed here, without loss of generality, that:
N<y2< <

The quadratic behavior of the estimator V'7g confers the ad-
vantage of having a bias and a variance independent of /™.
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Indeed, in the case of training set (y;,z;) regularly spaced (y;
resulting from a uniform sampling from [a,b]) and corrupted
by a white noise of variance o7 (cf. equation (1)), a calcula-
tion of mathematical expectation leads to:

Eg{ } z f*(yHl) f*(yl))z
rs = Yi+1 = Vi
~ Vﬂ(f*)+2(n— 1)0?
The expression is given for a = 0 and » = 1 but it may be

obtained with any values of a and b.
It is then possible to correct the bias of the estimator:

+2(n—1)%a?

[n>1]

= (zie1 —2)?

VTS(Dn) = - -
8 Vil =i

—2(n—1)%*c?

The calculation of variance may also be achieved:

varg {Vrs} ~ a2 (12n° — 4n?)

Similar calculations may be performed in the case of trai-
ning sets obtained by irregular sampling of the interval [a, b].
They lead to an unbiased estimation of V. (f*):
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whose variance is:
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As Vrs(Dy) is the sum of (n— 1) products of Gaussian va-

riables, it could be proved that the V7s(D,) distribution is
asymptotically a Gaussian. In our case, # is sufficiently large
so that the Gaussian assumption holds (it has been experi-
mentally checked, see figure 1).

Vrs —=Vie(f) ~ A (0,varg {Vrs})

Thanks to the statistical characterization of estimator V'7g, the
conditional joint likelihood of the training set and the esti-
mated Vrg(D,) may be calculated:

u Zi — i)
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The maximization of the log-likelihood leads to an estima-
tion criterion for the required coefficients 3

B(Dy) =argmin LZ@ ~p0n)?
o? 1 @
er (Vfc(fﬁ)) - VTS(Dn))

It is classically composed of a quadratic cost between the
measured z; and their estimated values (this is the empirical
loss) and a penalization term. However, it may be noticed
that contrary to classic regularization criteria, the penaliza-
tion is calculated from the training set and that it does not
depend on any hyperparameter.

3. APPLICATIONS

The variability criterion proposed was used for the approxi-
mation of the function f* : [0, 1] — R defined by:

2=/ = *Sln(4ﬂy) + Lsin (203@)

2

The training set D,, was generated according to (1) with a
value of 0¢ leading to a SNR of 10dB.

In order to evaluate the proposed approach, an experimen-
tal comparison between the constrained regularization (CR)
given by (4) and other regression methods is performed:
1000 realizations of non-uniform training sets are tested.
Thus, the risk of overfitting may be detected if outliers in
the integrated losses (equation (2)) exist.

The CR method can be applied as long as the Gaussian as-
sumption for the Vryg(D,) distribution is valid. Figure 1
shows the frequency histogram of the 1000 estimations of

Vrs(Dy) and the corresponding x? test. It proves than the
Gaussian assumption holds.
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Figure 1: Frequency histogram of Vrg(D,) (calculated with
the 1000 training sets). The dashed line indicates the fitted
Gaussian used for the x2 test. The obtained P-value is 0.54.

3.1 Parametric Regression

The polynomial obtained by (4) was compared with the poly-
nomial Py estimated by a classic Tikhonov regularization
method [10]:

n

0 = argmgn [Z (zi = Po(x;))” +AVe (Po)

where A is chosen with the L-curve method [11]. It consists
in plotting the empirical loss S ; (z; — Pg (x;))* versus the
penalization term. The plot has an ‘L-shape’ when plotted
on a loglog scale (see Figure 2). The location of the point
of maximum curvature corresponds to the value of A which
gives the best tradeoff between both criteria.
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Figure 2: L-curve calculated with the training set of Fig 5.

Figure 3 and table 1 give the integrated losses for both me-
thods. The proposed estimator outperforms the classic one
since overfitting risk and mean error are smaller.
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Figure 3: Polynomial regression: histograms of the inte-
grated losses. The bold lines are the mean errors.

Table 1: Polynomial regression: statistics on the integrated
losses (IL).

[ Regular design || Random design |

values x 103 CR | Tikhonov | CR | Tikhonov
(IL) 16.8 19.3 19.9 28
std(IL) 6.7 8 8.9 22.1
I, 49.4 107.3 69.8 289.8

Figure 4 confirms this result: when comparing integrated
losses for each simulation, the proposed method gives better
results except in the cases where the Tikhonov regularization
gives very small errors. Figure 5 gives an example when the
L-curve method is not effective: even if the L-curve plot has
a correct shape, the overfitting problem occurs. The problem
is avoided with the Constrained Regularization.
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Figure 4: Empirical comparison between the L-curve

method and the Constrained Regularization. The figure gives
the number of cases (in percent) where the integrated loss of
the proposed approach is smaller than the Tikhonov regular-
ization integrated loss.
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Figure 5: Example of polynomial regression (with n =

20, d = 16). For the Constrained Regularization: IL =
0.0446. For the Tikhonov regularization (with the L-curve
method): /L = 0.1047.

3.2 Kernel Regression

The coefficient 4 of the Nadaraya-Watson estimator is chosen
by the criterion (4). The result is compared with the estimator
obtained with the optimal value of 4:

hopt = argmhin {IL (gZVW(D”)> }

Figure 6 and table 2 give the integrated losses obtained for
the 1000 simulations (Figure 7 shows the simulation obtained
with the training set of figure 5) with both estimated values of
h. They prove that resolving (4) leads to a Nadaraya-Watson
estimator close to the optimal one since error distributions
are similar.

This result is confirmed by the relatives errors on # which are
kept small (see Table 2):

hest — h
gh(hesh hopt) = |esthiopt|
opt
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Table 2: Nadaraya-Watson approximation: statistics on the
integrated losses (/L) and the errors on % (&).

| Regular design | Random design
values x10° CR | optimal | CR | optimal
1079) 9 [ 183 [ 281 27
STd(IL) 65 | 65 [ 102 98
IL 0 49.8 45.8 84.2 74.4
&) 95% | x| 12% | X
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Figure 6: Nadaraya-Watson approximation: histograms of
the integrated losses for # = hey and i = hyp;. The bold lines
are the mean errors.
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Figure 7: Nadaraya-Watson approximation with the training
set of Fig. 5. For the Constrained Regularization: A,y =
0.0287, IL = 0.0476. For the optimal estimation: /., =
0.0297,IL = 0.0475.

4. CONCLUSION

The proposed approach is applied to regression techniques
where a solution is sought within a training set. The main
idea is to regularize the data fit process with prior informa-
tion extracted from the training set data.

Thus, the variability of a training set (information linked
to its regularity) is defined and used as a constraint on the

searched solution. Indeed, forcing the model’s variability to
be close to the variability of the training set provides a solu-
tion that is compatible with the richness of the training set,
thereby limiting the risk of overfitting.

Applying the proposed approach to scalar problems of para-
metric regression (polynomial regression) and nonparametric
regression (kernel approximation) gives a series of robust so-
lutions. The approach may be extended to other regression
techniques, including non-scalar cases.

Works on new estimators of variability designed in the spec-
tral field are underway. They aim at reducing the variance of
the variability estimator.
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