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ABSTRACT 

 
Analysis into the effect of packet loss on speech recognition 
performance shows that both the burst length and the overall 
proportion of packets lost contribute to a deterioration in 
accuracy. To combat this burst-like packet loss several methods 
are compared for estimating the value of missing feature vectors. 
Three forms of interleaver are then compared which distribute 
long duration bursts of packet loss into a series of smaller bursts 
in the feature vector stream. Experimental results are presented 
on a range of channel conditions and demonstrate that substantial 
accuracy gains can be achieved using estimation techniques 
provided burst lengths are short. For longer burst lengths 
interleaving is necessary to maintain performance. For example at 
a packet loss rate of 50% and average burst length 20 packets 
(which represents 40 feature vectors or 400ms) performance is 
increased from 49.6% with no compensation to 86% with 
interleaving and cubic interpolation.  
 
 

1. INTRODUCTION 
 
The move towards mobile and handheld devices for speech 
communication has lead to distributed speech recognition (DSR) 
systems being developed. The Aurora DSR standard proposed by 
the European Telecommunication Standards Institute (ETSI) 
offers good robustness to noise by replacing the low bit-rate 
speech codec on the terminal device with the static MFCC feature 
extraction component of the speech recogniser [1]. Figure 1 
shows an overview of a typical DSR system along with the 
proposals outlined in this work. 

 

 
Front End 

(static) 
Interleaving 

Lost vector 
estimation Unpacking 

Temporal 
derivatives 

Packetisation 

Buffering and 
de-interleaving 

to 
recogniser 

speech 

Lossy channel 

Client device 

DSR Server 

Noise 
compensation 

 
Figure 1: Architecture of the proposed DSR system. 

 
The networks across which DSR systems transmit packetised 
speech data often do not guarantee reliable delivery. When packet 
loss occurs, or too many bits are corrupted so that bit level 
forward error correction cannot correct the frame, then portions 
of the feature vector stream become lost. Early work on packet 
loss compensation for DSR considered splicing the feature vector 
stream together in loss periods [2] or duplicating correctly 
received vectors to compensate for lost vectors [1,3]. Alternative 
schemes have used interpolation to estimate lost packets [4] or 

have added error correction bits to protect the speech data [5]. 
These schemes have varying degrees of success and work 
reasonably well for short duration bursts of loss but degrade as 
burst lengths increase.   

The conditions that cause packet loss on both mobile and IP 
networks often have sufficient duration to cause bursts of loss to 
occur. Therefore, to characterise a channel in terms of its packet 
loss, two metrics need to be considered; the proportion of packets 
lost, α, and the average burst length, β. Figure 2 shows how these 
two characteristics affect speech recognition accuracy for packet 
loss rates from 10% to 50% and average burst lengths from 1 to 
20 vectors – see section 4 for experimental details. No packet loss 
compensation is employed in figure 2a with the result that 
accuracy is largely governed by the packet loss rate, α, whilst the 
average burst length, β, has far less effect. It is interesting to 
observe that as burst length increases, the accuracy converges to:  

baseline accuracy ×  (1 – proportion of vectors lost) 
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Figure 2: Word accuracy against varying channel condition with: 

a) no compensation ,   b) interpolation. 
 
Increased accuracy can be achieved by estimating the missing 
vectors prior to recognition. This is shown in figure 2b which 
applies linear interpolation to estimate the value of lost vectors. 
Now the overall loss rate, α, has less effect on accuracy than the 
average burst length, β. This is because interpolation is able to 
correct short duration bursts of loss but is less effective at 
estimating missing vectors which occur in longer bursts. This 
indicates that when estimating lost vectors it is not the proportion 
of vectors lost that is significant, but rather the average burst 
length. Indeed, baseline accuracy of 98.6% can be maintained 
even at a loss rate of 50% providing the average burst length is 
short. Thus it is more important to reduce the average burst 
length rather than reduce the overall packet loss rate through 
channel coding schemes. This work considers the combination of 
methods for estimating missing vectors and interleaving to reduce 
average burst lengths for distributed speech recognition.  
 

2.    ESTIMATION OF LOST VECTORS 
 
The estimation methods considered in this section use vectors 
that were correctly received before and after the burst of packet 

a) b) 
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loss to determine the value of lost vectors. The number of vectors 
used before and after the burst are labelled Nbefore and Nafter. Two 
forms of estimation are considered; repetition and interpolation. 
Repetition simply replaces lost vectors with copies of vectors 
immediately surrounding the loss. Interpolation fits a 
mathematically defined curve onto correctly received vectors 
surrounding the loss from which lost vectors can be estimated.  
 
2.1 Repetition 
 
In its most elementary form, repetition simply replaces a missing 
vector with a copy of the most recent correctly received vector, 
xbefore. Therefore the estimate of the nth vector of the burst is 
given,  
 

beforeˆ xx =n
        1 ≤ n ≤ β       (1) 

 
As only one previous vector is required, Nbefore=1 and Nafter=0. 
An improvement can be made by replacing each missing vector 
with a copy of the vector received either before or after the burst, 
depending on which it is closest, 
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where xbefore and xafter are the vectors received before and after the 
loss respectively and β is the burst length. This method requires 
Nbefore =1 and Nafter=1. This technique is known as nearest 
neighbour repetition and is the principle method of vector loss 
compensation specified in the ETSI Aurora DSR proposal [1].  
 
2.2 Interpolation 
 
Interpolation approximates missing vectors as points on a curve 
fitted to those vectors surrounding the burst of loss. To some 
extent the order of the curve governs the accuracy of estimation. 
However, more complex forms of curves require additional 
information, such as derivatives, which can result in poor fitting 
to the data. In linear interpolation a straight line is fitted between 
the two vectors immediately surrounding the burst of loss, hence 
Nbefore=1 and Nafter =1. The nth vector of the burst is given by 
 

( )beforeafterbefore 1
ˆ xxxx −

+
+=

β
n

n
 1 ≤ n ≤ β      (3) 

Linear interpolation causes the velocity of the signal to become 
constant for the duration of the estimation which results in its 
acceleration becoming zero. Linear interpolation may also result 
in a discontinuity at the edges of the burst. A better 
approximation can often be made by fitting a non-linear segment 
between the points xbefore and xafter. This curve can be made 
continuous at the edges of the burst by matching the velocity of 
the curve at these points to that of the signal. This work has 
considered a number of methods for non-linear interpolation and 
has found that cubic Hermite polynomials give best estimates. 
The non-linear interpolation function for estimating the nth lost 
vector in a burst of length β is, 
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The multivariate coefficients, {a0,.., a3}, need to be calculated so 
that vectors at the start and end of the loss follow a smooth 
trajectory with the first derivatives of the polynomial being 

continuous at the start and end of the loss [6]. These coefficients 
can be computed from the two vectors preceding and following 
the burst of loss, xbefore and xafter, and their first derivates, x′before 
and x′after. Expressing the interpolation function in terms of 
Hermite basis functions gives the estimate of the nth feature 
vector within the burst as 
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where t=n/(β+1), and derivates are approximated by 
( )1−−=′ beforebeforebefore xxx β  and ( )afterafterafter xxx −=′ +1β . As 

estimation of derivatives requires two vectors either side of the 
burst, Nbefore=2 and Nafter=2. If two vectors are not available the 
derivative is set to zero. In practice it was found that rapid 
fluctuations of the feature vector stream resulted in large 
estimates of the derivative components causing the interpolation 
to overshoot. Improved performance was achieved by reducing 
large derivative estimates by applying the following logarithmic 
compression to the vector differences, 

( )1log)sgn()( += xxxf        (6) 

which gives x′before and x′after as, 
 

     ( )1−−×=′ beforebeforebefore f xxx β        (7) 

     ( )afterafterafter f xxx −×=′ +1β       (8) 

 
3.    INTERLEAVING 

 
Interleaving is applied on the terminal device and serves to 
permute the order in which feature vectors are packetised such 
that bursts of loss are distributed amongst many shorter bursts. 
Formally, for a sequence of feature vectors, X, where, 

X = {x0, x1 , x2 , … , xN-1}   (9) 

interleaving can be expressed as a permutation producing a re-
ordered sequence, X’, given as, 

X’ = {xπ(0) , xπ(1) , xπ(2) , … , xπ(N-1)}         (10) 

where, π(i), is interleaving function and gives the index of the 
vector to be output at the ith time instance. The re-ordering made 
by the interleaving function requires feature vectors to be 
buffered prior to transmission which causes a delay in the end-to-
end transmission time. The interleaving delay, δ, is defined as the 
maximum delay that any vector experiences before transmission, 

( )( )ii
i

−= −1max πδ                     (11) 

where π-1 is the inverse function of π. The ability of an interleaver 
to disperse bursts of loss is related to its spread. An interleaver 
has spread s if all pairs of vectors that are within s vector indexes 
of each other in the input sequence are separated by at least s 
vector indexes in the output sequence, 

syx ≥−  whenever  ( ) ( ) syx <−ππ   (12) 

A burst of packet loss of length β will be totally distributed (i.e. 
no concurrent packets will be lost) by an interleaver with spread s 
if s ≥ β. For the case s < β the interleaver will not be able to fully 
distribute the burst which will result in some consecutive packets 
being lost. The remainder of this section considers three forms of 
interleaver for application to DSR. 
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3.1 Optimal spread block interleavers 
 
A block interleaver of size N operates by permuting the 
transmission order of a block of N feature vectors. This same 
permutation is applied to all subsequent blocks. Two block 
interleavers, πblock1 and πblock2, [7] are considered optimal in terms 
of maximising their spread for given size and are given as, 

πblock1(id + j) = (d – 1 – j)d + i     where 0 ≤  i,j ≤ d-1   (13) 

πblock2(id + j) = jd + (d – 1 – i)     where 0 ≤ i,j ≤ d-1    (14) 

where Nd = . It is interesting to observe that π1 and π2 form an 

invertible pair as π1 = π2
-1 and π2 = π1

-1. The delay and spread of 
these two interleavers is related to the square root of their size. 
From equations 13 (or 14), 11 and 12 the block interleaver delay, 
δblock, and spread, sblock, are given as, 

δblock = d2-d  and sblock = d   (15) 
 
3.2 Decorrelated block interleavers 
 
The previous interleaver disperses burst-like packet loss by 
maximising spread according to equation 12. An alternative view 
of interleaving is that it is the process of decorrelating the order 
in which vectors are output in relation to their input order. In this 
view maximising decorrelation will minimise the resulting 
average burst lengths. A decorrelated block interleaver of size N 
consists of a permutation sequence of length N, defined by, 
 

)}1(,),1(),0({ −= Neddecorrelat ππππ L                 (16) 

 
where the sequence π(0...N-1) aims to maximise the 
decorrelation measurement, Dπ, 
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The ability of an interleaver to distribute bursts of packet loss is 
related directly to its decorrelation value and is shown in an 
experiment where a set of 1000 block interleavers, each with 
random permutation sequences of length 16, is generated – {π1 to 
π1000}. A channel is simulated with packet loss rate α=50% and 
average burst length β=4 with each packet transporting 2 vectors. 
Figure 3a shows the output average burst length as a function of 
decorrelation value for each interleaver. Figure 3b shows the 
resulting speech recognition accuracy against decorrelation value. 
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Figure 3: Decorrelation value against a) average burst length and 

b) word accuracy for 1000 random block interleavers. 
 
The strong negative correlation in figure 3a shows that 
interleavers with high decorrelation values are more effective at 
distributing bursts of packet loss than those with lower 
decorrelation values. Figure 3b shows that interleavers with high 
decorrelation values enable higher recognition accuracy because 
of the shorter duration bursts over which estimation must operate. 

For a block interleaver of size N, the selection of permutation 
sequence to maximise the decorrelation value is not elementary. 
The number of possible permutation sequences of length N is N!, 
hence a comprehensive state space search becomes impractical 
for higher degree interleavers. Heuristic search methods allow 
longer permutations to be created but do not guarantee that 
results will be optimal. The decorrelated interleavers used in this 
work have been selected using a greedy local search [8], where 
movement in the state space is defined by the swapping of two 
elements in the permutation sequence. Once a suitable sequence 
has been found its delay and spread can be determined from 
equations 11 and 12.  
 
3.3 Convolutional interleavers 
 
Convolutional interleavers can be modelled as an arrangement of 
shift registers each holding one feature vector [7]. Sequential 
input feature vectors are divided amongst different sub-
sequences. Each sub-sequence consists of a different number of 
connected shift registers and hence imposes a different delay to 
the feature vectors stored in it. A convolutional interleaver of size 
N has Nd =  sub-sequences and takes the form,  

( ) ( )didiiconv mod−=π    (18) 

The delay, δconv, and spread, sconv, of a convolutional interleaver 
are related to d and from equations 18, 11 and 12 are given as, 

δconv = d2-d  and sconv = d – 1 (19) 
 

4. EXPERIMENTAL RESULTS 
 
The experimental results examine the effect that the different 
types of vector estimation and interleaving have on recognition 
accuracy for a variety of simulated channels. The recognition task 
for these experiments is the Aurora connected digit database [1]. 
Digits are modelled using 16-state, 3-mode HMMs, trained from 
a set of 8440 digit strings, using static MFCCs together with 
velocity and acceleration derivatives. The test set comprises 4004 
noise-free digits strings (13,159 digits in total) which gives 
baseline accuracy of 98.5% with 95% confidence error bands of 
+/- 0.76% at 75% accuracy and +/- 0.38% at 95% accuracy. As 
per the ETSI standard, two vectors are carried by each packet. 

Four channels were simulated by a 3-state Markov chain [4] 
to give a mixture of network conditions in terms of the packet 
loss rate, α, and average burst length, β. The channel parameters 
are shown in table 1 and include both high and low loss rates and 
long and short average burst lengths. 

 
Channel Loss rate, 

α 
Av. Burst 
length, β 

Baseline accuracy 
(no compensation) 

A 10% 4 91.19% 
B 10% 20 89.43% 
C 50% 4 49.56% 
D 50% 20 49.61% 

Table 1: Simulated channel conditions. 
 
4.1 Missing vector estimation  
 
Experimental results, shown in table 2, measure the effect on 
recognition accuracy of the various estimation schemes described 
in section 2. At this stage no interleaving has been applied. 
 

a) b) 
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Method A B C D 
No compensation 91.2 89.4 49.6 49.6 
Repetition 94.7 90.2 76.0 53.8 
NN Repetition 96.6 91.6 84.0 58.8 
Linear interpolation 96.4 91.2 81.5 56.8 
Hermite interpolation 96.4 90.7 80.4 54.7 
Log Hermite interpolation 96.7 91.7 87.2 60.5 

Table 2: Recognition performance for vector estimation schemes. 
 

The results show that Hermite interpolation, with logarithmic 
compression of the first derivative, gives superior performance in 
all the channels tested. However, it should be noted that nearest 
neighbour repetition has similar performance and is the result of a 
less complex process. Hermite interpolation, without logarithmic 
compression, gives poor performance and demonstrates the 
importance of preventing large overshoots in estimation.  
 
4.2 Interleaving 
 
Based on the superior performance of log Hermite interpolation, 
figure 4 shows the effect of combing this with the three 
interleavers described in section 3 on the four channel conditions. 
For each class of interleaver the size is varied between 1 and 64 
vectors. The interleaving size of 1 is equivalent to no interleaving 
and corresponds to the accuracy given in table 2. Equations 15 
and 19 show that the delay of an interleaver and its spread are 
both functions of interleaver size. This means there is an inherent 
trade-off between word accuracy and delay; therefore results are 
presented as word accuracy against delay for each interleaver. 
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Figure 4: Recognition accuracy against delay as a function of size 

for various interleavers and channel conditions. 
 

The figures show that interleaving feature vectors prior to 
transmission results in a significant increase in word accuracy, 
the magnitude of which is related to interleaver size. Figures 4a 
and 4c correspond to relatively short burst lengths and show the 
increase in accuracy levelling out as the size (and hence the 
spread) of the interleavers becomes sufficient to fully distribute 
the bursts. Increasing the interleaver size beyond this point gives 
no further increase in recognition accuracy. For longer burst 
lengths, shown in figures 4b and 4d, the interleaver size is not 
sufficient to fully distribute the bursts but does offer gains in 
accuracy. To restore performance for these longer burst lengths 
the interleaving delay would need to be considerably longer than 

shown. The figures also show that whilst all interleavers offer 
useful performance gains, the decorrelated interleaver generally 
results in slightly higher accuracy whilst imposing a smaller delay 
than the other interleavers. 
 

5. CONCLUSIONS 
 
This work has shown that packet loss can have a severe effect on 
recognition accuracy. Improvements can be made by replacing 
lost vectors with estimates based on received vectors surrounding 
the burst of loss. All five methods of estimation lead to 
improvements in recognition accuracy with nearest neighbour 
repetition and Hermite interpolation, with logarithmic 
compression, giving best performance. Testing on different 
channel conditions showed that estimation methods are able to 
recover performance even on very lossy channels provided burst 
lengths are reasonably short. At longer burst lengths estimation 
techniques become less effective due to the non-stationarity of 
the vector stream. To reduce burst lengths, and hence improve 
vector estimation, three types of interleaver have been 
considered. Experiments showed that increasing the size of the 
interleaver gave substantial increases in recognition performance, 
but at the expense of an exponential increase in delay. Analysis 
into the usability of speech recognition systems suggests that this 
delay should be less than 500ms [5]. Of the three interleavers 
tested, the decorrelated interleaver gave slightly superior  
recognition accuracy whilst imposing a lower delay. These results 
show that recognition accuracy is more affected by the average 
burst length of packet loss rather than the overall percentage of 
loss. This suggests that for robust recognition performance it is 
more important to distribute bursts of loss through techniques 
such as interleaving rather than attempting to reduce the overall 
percentage of lost packets.    
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