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ABSTRACT

We address signal detection in magnetic resonance force microscopy
(MRFM) and single spin microscopy (SESM). MRFM and SESM
are considered as a promising technology to provide nondestruc-
tive and atomic-scale imaging. From a signal processing point of
view, the main challenge is to extract very weak signals from mea-
surements with a signal to noise ratio (SNR) typically less than
−15 dB. We investigate two detection schemes based different fea-
tures of the underlying system. The parametric approach is derived
from the generalized likelihood ratio test (GLRT). The nonpara-
metric approach exploits the spectral property of the observation.
Numerical experiments show that both detectors provide excellent
results at very low SNRs.

1. INTRODUCTION

Signal detection in magnetic resonance force microscopy (MRFM),
[4], and single spin microscopy (SESM) [3] have become an ac-
tive research area recently [1]. MRFM and SESM’s potential to
observe molecules, protein and chemicals in their environment
at nanoscales is considered as a promising technology to provide
nondestructive and atomic-scale imaging.

The signal of interest in MRFM and SESM is generated by
interaction of a spin-spin system-one spin in the magnetic tip of
the cantilever (the sensor), the other spin in the sample of material
being microscoped. From a signal processing point of view, the
main challenge lies in the very low signal to noise ratio, typically
smaller than −15 dB.

In [1], the desired spin signal is modeled as a telegraph sig-
nal. Despite its simplicity, this model captures the most impor-
tant aspect of quantum mechanical effects. Based on this model, a
straightforward approach to construct the test statistic is the gen-
eralized likelihood ratio test (GLRT). In many cases, the GLRT
has optimal properties. However, due to unknown distribution of
the test statistic, a bootstrap procedure is applied to determine the
test threshold. In order to obtain bootstrap samples, the data set
is divided into several blocks. Each data block has a reduced data
length. Furthermore, we need to know the physical parameters in
advance. These values may not be readily available in practice.

To overcome these difficulties, we suggest a nonparametric ap-
proach based on the spectral property of the observations. Since

the power spectrum of a white noise is constant, detecting a signal
is equivalent to testing whether the power spectrum of the observa-
tion process is constant or not. The threshold for a given test level
α can be accurately calculated by the formulae in [7].

In the following section, we give a short description of the
signal and noise model. The parametric and nonparametric ap-
proaches are outlined in section 3 and 4, respectively. We discuss
simulation results in section 5. Concluding remarks are given in
section 6.

2. PROBLEM FORMULATION

The MRFM signal is modeled as a sinusoidal wave of known fre-
quency modulated by a phase switching process

s(t) = Ãx(t) cos(ωt + φ), (1)

where Ã, ω, φ denote the amplitude, frequency and initial phase,
respectively. The phase switching process x(t) is modeled as a
telegraph process. By definition, x(t) = aejk(t)π , where a is a
random variable taking values +1 and −1 with equal probability
and k(t) is a Poisson process with parameter ν.

As the frequency ω is known, the data can be down shifted to
baseband, lowpass filtered and sampled with frequency fs. The
pre–processed data is expressed as

st = Axt, xt ∈ {1,−1} (2)

where A = Ã cos φ and the switching process xt is a first order
discrete–time Markov process with transition probabilities

q = p(xt = 1|xt−1 = 1)=p(xt = −1|xt−1 = −1)

=
1

2
+

1

2
exp(−2ν

fs

), (3)

q̄ = p(xt =−1|xt−1 =1)=p(xt=1|xt−1 =−1)

= 1 − q. (4)

From the physical point of view, q is the probability that the spin
stays in the same state from the current sample to the next sample.
With properly selected fs, q usually lies between 0.90 and 0.99.
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Let nt denote a white Gaussian noise process with zero mean
and known variance σ2. Our problem is to detect the signal st

based on the observation yt, (t = 1, . . . , T ).

3. PARAMETRIC APPROACH

In the parametric approach, detecting the discrete signal st is for-
mulated as a hypothesis test

H0 : yt = nt 1 ≤ t ≤ T

H1 : yt = st + nt 1 ≤ t ≤ T. (5)

Let f0(·) and f1(·) denote the likelihood function under H0

and H1, respectively. Applying the generalized likelihood ratio
test (GLRT) [5], we construct the test statistic as follows

λ = max
A,x

log f1(y; Ax) − log f0(y), (6)

where x = [x1, . . . , xT ] represents the phase sequence and y =
[y1, . . . , yT ] collects the observations from t = 1 to T . Note that
both A and x are unknown. According to the signal and noise
model defined previously, (6) can be expressed as [1]

λ =

T
∑

t=1

[

1

σ2
(Âx̂t)yt −

1

2σ2
(Âx̂t)

2 + log p(x̂t|x̂t−1)

]

(7)

where Â, x̂ = [x̂1, . . . , x̂T ] denote the maximum likelihood es-
timate of A, x, respectively. Let α, tα denote the test level and
corresponding threshold, respectively. The signal is detected when
λ > tα. Otherwise no signal is detected.

Maximizing the log–likelihood logf1(y; Ax) is greatly sim-
plified by applying the well known Viterbi algorithm [8]. To ap-
ply the Viterbi algorithm to maximize logf1(y; Ax), we need to
know A, which is unknown. We address this problem by divid-
ing the parameter space of A into discrete points A1, . . . , AM and
running a bank of M Viterbi algorithms with each tuned to one of
these values. This provides an efficient way of finding the most
likely amplitude and state sequence in the maximum a posteriori
probability sense of a process assumed to be a finite–state discrete
time Markov process.

One difficulty encountered in this approach is that the distri-
bution of the test statistic under H0 can not be determined analyt-
ically. To solve this problem, we apply the bootstrap test which
requires little knowledge about the distribution of the test statistic.

3.1. Bootstrap Test

The key idea behind the bootstrap is that, rather than repeating
the experiment, one obtains the “samples” by reassignment of the
original data samples. We outline the basic concept and the test
procedure. For more details, the reader is referred to [9] and refer-
ences therein.

Let Z = {z1, z2, . . . , zM} be an i.i.d. sample set from a com-
pletely unspecified distribution F . Let ϑ denote an unknown pa-
rameter, such as the mean or variance, of F . The goal of the fol-
lowing procedure is to construct the distribution of an estimator ϑ̂
derived from Z .

The bootstrap principle

1. Given a sample set Z = {z1, z2, . . . , zM}
2. Draw a bootstrap sample Z∗ = {z∗

1 , z∗
2 , . . . , z∗

M}
from Z by resampling with replacement.

3. Compute the bootstrap estimate ϑ̂∗ from Z∗.
4. Repeat 2. and 3. to obtain B bootstrap estimates

ϑ̂∗
1, ϑ̂∗

2, . . . , ϑ̂∗
B .

5. Approximate the distribution of ϑ̂ by that of ϑ̂∗.

In step 2., a pseudo random number generator is used to draw a
random sample of M values, with replacement, from Z . A possi-
ble bootstrap sample might look like Z∗ = {z10, z8, z8, . . . , z2}.

For the problem testing the hypothesis H0 : ϑ = ϑ0 against
H0 : ϑ 6= ϑ0, we define the test statistic as

T̂ =
|ϑ̂ − ϑ0|

σ̂
(8)

where σ̂2 is an estimator of the variance of ϑ̂. The inclusion of σ̂
guarantees T̂ is asymptotically pivotal. The following procedure
solves the problem when the distribution of the test statistic can
not be determined analytically.

Bootstrap test

1. Resampling: Draw a bootstrap sample Z∗.
2. Compute the bootstrap statistic

T̂ ∗ = |ϑ̂∗−ϑ0|
σ̂

.
3. Repeat 1. and 2. to obtain B bootstrap statistics.

4. Ranking: T̂ ∗
(1) ≤ T̂ ∗

(2) ≤ . . . ≤ T̂ ∗
(B)

5. Testing: Reject H0 if T̂ ≥ T̂ ∗
(L) where L is chosen

such that L = b(1 − α)(B + 1)c.

3.2. Detection of the phase process

As i.i.d. samples are assumed in the bootstrap procedure, the de-
tection scheme presented previously is modified. We divide the
observation y into M non–overlapping data blocks of length T/M

y1, y2, . . . , yM .

To ensure independence between data blocks, one can drop the last
sample of each block. The statistic (7) is computed independently
for each data block

λ1, λ2, . . . , λM .

We consider these as i.i.d. samples from a random variable Λ. For
computational simplicity, we estimate the mean of Λ in the boot-
strap test.

More precisely, the hypothesis testing specified by (5) is refor-
mulated as

H0 : ϑ = µ0,

H1 : ϑ 6= µ0, (9)
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where ϑ = EΛ is the mean of Λ and µ0 = E[Λ|yt = nt, 1 ≤
t ≤ T ] is the mean of Λ when the data contains only noise. The
sample mean 1/M

∑M

m=1 λm is used as the estimator ϑ̂. In this
particular case, σ̂ is given by the estimate of the standard deviation
√

1
M−1

∑M

m=1(λm − ϑ̂)2. As the distribution of Λ can not be de-
termined analytically, µ0 needs to be estimated by using training
data that contains only noise.

The proposed detection scheme is summarized as follows.

Bootstrap detector

Input: y = [y1, y2, . . . , yM ], µ0

1. Maximizing log–likelihood of ym over A,x,

to obtain Âm, x̂m, m = 1, . . . , M .
2. Compute λm, m = 1, . . . , M .
3. Bootstrap test.

Output: signal detected or not

In order to the reduce computational cost, we suggest an approx-
imation to the above procedure. Instead of maximizing the log–
likelihood of ym over Am and xm, we estimate A from the first
data block y1 by maximizing the corresponding log–likelihood
f1(y1; Ax1). We assume that the estimate Â1 from a data block
is a good estimate for A2, . . . , AM . In the subsequent data blocks
y2, . . . , yM , the log–likelihood is maximized over the state se-
quence using a fixed value of Â1 in the Viterbi algorithm. Steps 2.
and 3. remain the same.

4. NONPARAMETRIC APPROACH

In the nonparametric approach, we exploit the spectral property
of the observation yt. According to the signal model described
in section 2, the signal st is a discrete process sampled from a
telegraph process with amplitude A. The correlation function and
the power spectrum of such a process are given by [6]

c(τ ) = 4A2 exp(−2ν|τ |) (10)
and

C(ω) =
4A2ν

4ν2 + ω2
, (11)

respectively. The power spectrum of st can be expressed by eq.
(11) as

Css(ω) =
1

Ts

∞
∑

m=−∞
C(

ω − 2πm

Ts

) (12)

where Ts is the sampling interval. When a signal is present, the
observation process yt has a non-constant power spectrum

Cyy(ω) = Css(ω) + σ2. (13)
Otherwise, Cyy(ω) is equal the constant noise spectrum σ2. There-
fore, to decide whether a signal is present or not, we can test
whether the spectrum Cyy(ω) is constant or not. More precisely,
the detection problem is formulated as the following hypothesis
test.

H0 : Cyy(ω) is constant.
H1 : Cyy(ω) is not constant. (14)

The test statistic is constructed from the periodogram values

Yr =Iyy(
2πr

T
)=

1

T
|

T
∑

t=1

yte
−j 2πr

T
t|2, (r=1,. . ., R), R=[

T − 1

2
]

based on the observations yt, (t = 1, . . . , T ). Let

V =
R

∑

r=1

Yr and Vs =
s

∑

r=1

Yr/V. (15)

Then when the null hypothesis H0 is true, Vs (s = 1, R − 1)
are uniformly distributed over the interval [0, 1] [7]. However, it
is considered more natural to consider the ith order statistic of the
Vs set and to base a test on the maximum deviation of Vs from its
expected value s/R [2]. Thus the test statistic is given by

U = max
s=1,...,R−1

|Vs −
s

R
|. (16)

From [7] we know that the threshold for a given test level α, the
threshold tR,α can be accurately approximated by

tR,α =

√

− 1
2

ln α
2√

R − 1 + 0.2 + 0.68√
R−1

− 0.4

R − 1
. (17)

For R ≥ 6 and α ≤ 0.62, the error is less than 0.01.

The ”constant spectrum detector” is summarized as follows.

Constant spectrum detector

Input: y

1. Compute periodogram values Yr,

(r = 1, . . . , R), R = [T−1
2

].
2. Compute Vs, (s = 1, . . . , R − 1).
3. Obtain the test statistic U and threshold tR,α.

Output: signal detected or not

Compared to the parametric approach discussed previously, the
constant spectrum detector requires no prior knowledge about the
model parameter, such as the transition probability q and noise
variance σ2. The only assumption we made is that nt is a white
noise. The proposed nonparametric detector is a good alternative
to the parametric one when these physical parameters are not avail-
able.

5. NUMERICAL EXPERIMENTS

We test the proposed detectors by simulated baseband data. The
SNR, defined as 10 log(A2/σ2), varies from −35 dB to −5 dB
in 2.5 dB steps. In the first experiment, we consider a transition
probability of q = 0.95, false alarm rate α = 0.05. In the second
experiment, the transition probability q is 0.99. The number of tri-
als in each experiment is 100. The bootstrap detector uses a data
set of length T = 105. The number of data blocks M = 20. Thus
the effective data length is T̄ = T/M = 5000. For a fair com-
parison, the constant spectrum detector uses a data set of length
T̄ = 5000.

Fig. 1 shows that the probability of detection increases with
growing SNR. For q = 0.95, both detectors behave similarly. At
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Fig. 1. Probability of detection vs. SNR. SNR= [−35 : 2.5 : −5] dB,
α = 0.05, q = 0.95, data length of the bootstrap detector: T = 105, data
length of the constant spectrum detector: T̄ = 5000.

SNR < −17.5 dB, there is little chance to detect the signal. In the
threshold region −17.5 to −12.5 dB, the probability of detection
increases drastically from 0.1 to 1. For SNR > −15 dB, the pres-
ence of the signal can always be detected.

Fig. 2 presents results of the second experiment with q = 0.99.
The overall probability of detection is larger than that in the previ-
ous experiment. While both detectors have the same SNR thresh-
old in fig. 1, the bootstrap detector has a lower SNR threshold than
the constant spectrum detector in this setting. When q = 0.99,
the estimate for the phase sequence x̂ is more accurate than that
at q = 0.95. Obviously, the parametric approach is more sen-
sitive to change in the model parameter than the nonparametric
approach. The bootstrap detector has a probability of detection of
0.9 at −17.5 dB and the constant spectrum detector achieves the
same performance at −15 dB. This is a encouraging result for the
MRFM application.

In the simulation we also observe that both methods have a
better performance when a larger data set is used. It implies that
we can further improve detection performance by increasing the
observation time. Fig. 1 shows that the constant spectrum detec-
tor needs significantly less data than the bootstrap detector for the
same performance. The relation between data length and detection
performance is still under investigation.

6. CONCLUSION

We considered the problem of detecting a weak sinusoidal sig-
nal with random phase. Signals of this type are particularly im-
portant in MRFM. Main challenges associated with this applica-
tion include signal incoherence, low SNRs and limited observa-
tion time. We studied two totally different methods. The paramet-
ric approach is based on the GLRT and the bootstrap technique.
The test procedure requires prior knowledge about the underlying
model parameters. The nonparametric approach exploits the spec-
tral property of the observation. The detector decides whether the
power spectrum of the observation process is constant or not. A
nonconstant spectrum indicates presence of a signal. Numerical
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Fig. 2. Probability of detection vs. SNR. SNR= [−35 : 2.5 : −5] dB,
α = 0.05, q = 0.99, data length of the bootstrap detector: T = 105, data
length of the constant spectrum detector: T̄ = 5000.

experiments showed that both methods provide satisfying results
at low SNRs. The bootstrap detector is more sensitive to parameter
change than the constant spectrum detector. The spectral detector
requires fewer data than the bootstrap detector to achieve the same
performance. Thus the nonparametric approach may be preferable
to the parametric approach in some settings.
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