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ABSTRACT 
In this paper, the problem of calculation of first and second deriva-
tives in general non-linear dynamical systems is addressed and an 
attempt of solution by means of signal flow graph (SFG) techniques 
is proposed. First and full second derivatives of an output of the 
initial system respect with the node variables of the starting SFG are 
delivered through an adjoint graph derived without using Lee’s 
theorem. Mixed second derivatives are deduced by quantities at-
tained in adjoint graphs of the original graph or graphs related to it. 
A detailed theoretical demonstration of these formulations is given. 
Even though no adjoint graph has been derived in case of mixed 
derivatives, the ability of the proposed method to determine all Hes-
sian matrix entries in a complete automatic way is highlighted. 

1. INTRODUCTION 
The problem of sensitivity calculation of complex discrete time 
domain systems has been effectively dealt with in literature through 
Signal-Flow-Graph (SFG) techniques [1]. New algorithms for gra-
dient computation in gradient-based linear and non-linear adaptive 
networks [2]-[4] have been developed. A more recent work [5] 
represents a generalization of previous approaches, as it delivers 
derivatives of an output at a given time with respect to a variation of 
an internal parameter not necessarily at the same instant, allowing to 
derive the gradient information for dynamical non-linear system 
learning. This is achieved by a suitable adjoint network, whose defi-
nition is completely based on Lee’s theorem [2]. This method al-
lowed to work out an automatic procedure involving Jacobean based 
information for system adapting, but it has left open the problem of 
Hessian matrix calculation. The present paper is claimed to give a 
solution to such a task. On purpose, a new adjoint graph (defined 
without using Lee’s theorem) is derived to yield first and full second 
derivatives, from which the mixed ones can be deduced, as it will be 
explained later on. 
As in [5], the class of systems here addressed is that of non-linear 
dynamical ones, like dynamical neural networks. They can be repre-
sented by SFGs. A SFG is a set of nodes and oriented branches. A 
branch is oriented from the initial node i and the final node j. There 
are three different types of nodes: input nodes, which have only one 
outgoing branch, output nodes, which have only one incoming 
branch, and general n-nodes, which sum of incoming branches and 
distribute the result to outcoming branches. All other branches be-
side input and output ones are called f-branches. Each of them have 
two variable associated: the initial x one at the tail of  branch and the 
final one v at the head of the branch. We can distinguish among two 
different types of f-branches in dependence of the relation between x 
and v. Taking into account we address the case of discrete time sys-
tems and that in our notation only branches are indexed, we can list 
them as: 

1) Static branch: ( )( ), ( ),j j j jv f x t t tα=  

2) Single delay branch : 1 ( ) ( 1)j j jv z x t x t−= = −  
Function f of the static branch is requested to be differentiable 

and it can change by time, since it depends on the time-varying 
parameter ( )j tα . This let it cover a large class of nonlinearities, the 
most common functional relations being: 

( )( ) -  

( ) ( )  
j j j
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v f x t non linear branch

v w t x t linear branch
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2. FIRST AND FULL SECOND DERIVATIVES 
Here we derive an adjoint graph for automatic computation of first 
and second derivatives of an output of the original graph respect 
with its nodes. The word adjoint is not here used as rigorously as its 
definition requires: in fact the derived graph for derivatives calcula-
tion is a reverse graph but does not preserve the same topology of 
the original one. Such a graph is characterized by two level, one 
exclusively for first derivatives and both for determination of full 
second derivatives. This fact immediately lets us introduce the most 
relevant difference between this approach and that one suitable for 
general systems in literature [1]: the Lee’s theorem has not been 
employed to define the functional relations of the adjoint graph 
branches. Manipulation of derivative operation has revealed to suf-
fice for our purposes. However, we got a generalization of previous 
approach: indeed, if we consider only the part of the adjoint graph 
relative to first derivatives we notice that it coincides with the ad-
joint graph referred in [1]. Concerning second derivatives, it must be 
noted that only the full ones are here calculated: the mixed ones will 
be considered in the following. 
Now we can proceed to describe which are the transformations to do 
to get the adjoint graph from the topology of the original one. They 
are listed in Table 1. The first step consists on showing the validity 
of such transformations in case of topologically linear graph, i.e. a 
SFG where each node has just one incoming and one outgoing 
branches, and where there are one input and one output branches. 
The starting branch to analyze is the output one, that should repre-
sent the two-level input branch for the adjoint SFG. As output 
branch is a zero-memory branch and different outputs are independ-
ent each other (also for non-linear topology SFGs), the following 
holds: 
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In case of second derivative, it suffices to derivate further: 
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Let us continue showing the formulas derived in case of static 
branches. We move from the supposition that derivatives respect 
with node jv  are correct, that means: 

( )
2
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Hence, we can calculate derivatives of the output respect with the 
node 1j jx v −= . Concerning the first derivative we have: 

( ) ( ) ( )'( ) '( ) '( )
( ) ( ) ( )

k k k
j j j

j j j

y t y t v tx v f t
x t v t x t

ττ τ τ
τ τ τ

∂ ∂ ∂ −
= = = ⋅ −
∂ − ∂ − ∂ −  

while for second derivative it can be deduced: 
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where we named: 
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Regarding to unit delay branch we can write, under the same afore 
mentioned hypotheses: 
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In case of input branch we do not have to derive anything since the 
corresponding branch in adjoint SFG fulfils only the role to deliver 
the derivatives of the node to which it is connected. So, proof of 
validity of transformation set can conclude here if we limit our 
analysis to topologically linear SFG. However, we can generalize 
such a result, observing that a general graph can be seen as several 
topologically linear graphs connected through addition and distribu-
tion nodes, (Figure 1). This means to arrange previous formulas to 
fit then to this new scenario. For example, we can not employ input 
branches in adjoint SFGs (for each topologically linear graph in-
volved) as: 

' ( ), '' 0j kj jy yδ δ τ= =  

since these are not the right derivatives respect with those input 
nodes in corresponding original SFGs. However, we shall be able to 
show that an addition node is a distribution node in the adjoint graph 

and vice versa. Indeed, let us suppose, without loss of generality that 
the system output depends on the addition node through a generic 
function with memory as follows: 
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Table 1. Transformations of functional relations in f-branches from 
original graph to adjoint one. 
 
where n is the number of incoming branches. We have then: 
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Figure 1. Addition and distribution nodes connecting topologically 
linear SFGs. 
 
 
Similar considerations can be made for second derivatives: 
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Concerning the distribution node, we can underlie, without loss of 
generality, that there is a general function with memory describing 
the dependence of desired output on the n outgoing branches: 

( )1 2, ,...., ny h u u u= . Then, 1 2 ... nu u u u= = = =  holds, where u  is 
the value of the incoming branch. This let us state: 
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In conclusion, it can be affirmed that the set of transformations in 
Table 1 are valid for generic topology SFGs. 

3. MIXED SECOND DERIVATIVES 
We are not interested for the moment in deriving an extended ad-
joint graph to consider also the case of mixed second derivatives, 
but just in showing how these quantities can be calculated directly 
from those ones obtained by means of the method described in the 
previous section. That is why we shall omit the time variable from 
the following expressions, assuming that the output ( )ky t at time t 

depends on node variables ( )1ix t τ−  ( )2jx t τ−  at different times 

1 1,t tτ τ− − . The term we are interested on will be thus restricted to 
its topological meaning: 
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∂ ∂
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∂ − ∂ − ∂ ∂
          (1) 

We shall distinguish three cases, in accordance with the relationship 
between node variables ,i jx x , as it follows. 

3.1 Case 1: only dependent variables i jx , x  

The dependence between ,i jx x  is given by ( )j ix f x=  and the 

output y depends on ix  only through jx ; we shall assume that f is 

invertible, consequently yielding ( ) ( )1
i j jx F x f x−= = . In compli-

ance with formulas of previous sections, the following notation 

holds:
2 2
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. From that, equation (1) 

and inverse function theorem, it derives that: 
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It can be underlined that: 

• ij jix x′′ ′′≠ : in fact ,i jx x  are dependent and Schwarz’s 
theorem can not be applied.  

• ijx ′′  and jix ′′  can be calculated by means of first and full 

second derivatives relative to the original graph ( ,j jx x′′ ) or 

to sub-graphs of it ( ,f f′ ′′ ). 

3.2 Case 2: only independent variables i jx , x  

Conditions of Schwarz’s theorem are assumed to be valid: this is 

supported by the independence between ,i jx x . Therefore ijx ′′  and 

jix ′′  are expected to be identical. Anyway, we need further topo-
logical information for our purposes: that is the knowledge of a 
“common” node between ,i jx x , namely kx . This node is depend-

ent on both ix  and jx , through two different functions, i.e. 

( ) ( ),k i i k j jx f x x f x= = . In particular, we can state that jf ′  does 

not depend on ix , and jf ′  on jx  as well, if we choose kx  to be the 

first common node, i.e. the first addition node combining ,i jx x . 

This means that 
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x
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and thus: 
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We can observe that calculation of mixed derivatives in such a case 
involves quantities attainable from Case 1 and first derivatives of 
suitable sub-graphs. 

3.3 Case 3: both dependent and independent variables i jx , x  

In contrast to case 1, output y depends on ix  not only through jx  
but also through different nodes (Figure 1), i.e. we can write 

( ) ( )( ), ,j i i iy g x x g f x x= = . We can think to split ix  into two new 

variables, ix  and ix , the latter being linked to jx  through 
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( ) ( )1
i j jx F x f x−= = , and the former being completely independ-

ent from jx . This let us deduce the formulation of mixed deriva-
tives we are interested to: 

2
i i i

ij
i j i i j i i j i i j

y y x y x y xx
x x x x x x x x x x x

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′′= = = +          ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
 

Observing that 
i j i i

y y y yf
x x x x
∂ ∂ ∂ ∂′= ⋅ = −
∂ ∂ ∂ ∂

, we shall have: 

( ) ( ) ( )1 1
ij i j

i i

yfx x xf f f x x
  ∂ ∂′′′′ ′′ ′= ⋅ − ⋅ −   ′ ′ ′ ∂ ∂   

          (4) 

that immediately reduces to (2) as soon as 0ix = . Let us focus on  
the third term in (4), that is given by: 
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where ix′′  is the full second derivatives of the graph deduced from 
the original one by splitting ix  into ix  and ix . We can now afford 
to implement what done in case 2, and write: 
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where kx  is the first common node between ix  and ix , and 

( ) ( ),k i k ix g x x g x= = . Summarising, we get the final formula: 
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where ( ) ( ) ( ), ,j i k i k ix f x x g x x g x= = =  hold. It can be easily 
noticed that only first and full second derivatives relative to the 
original graph, the graph derived by splitting the dependent variable 
into his two components, and particular sub-graphs of them occur in 
(5). Similarly, we can derive the following for the reverse mixed 
derivative: 
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where ( ) ( ) ( ), ,j i k j k ix f x x h x x g x= = =  hold. Same consid-

erations as above can be made. In particular, (6) reduces to (3) when 

0ix = . Then, we can rewrite (5) and (6) as in the following com-
pact way: 
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Figure 2. A simple SFG example in case 3: 1 2,x x  are the both de-
pendent and independent node variables addressed. 
 
 

4. CONCLUSIONS 
SFG techniques have been successfully employed here to calculate 
first and second derivatives in dynamical non-linear systems. 
Firstly, a suitable adjoint graph has been derived without using 
Lee’s theorem to yield first and full second derivatives of an output 
of the original graph respect with one of its nodes automatically. 
This let previous SFG based approach for sensitivity calculation [2]-
[5] be considered as particular case thereof. Secondly an helpful 
formulation for mixed second derivatives has been deduced in order 
to make them dependent on quantities attainable by means of suit-
able adjoint graphs for first and full second derivatives, even though 
a proper graph description of such dependencies actually lacks. 
Derivation of that is the first issue for future works. Then, applica-
tion of proposed approach to adapting problems where calculation 
of Jacobean and Hessian based information is involved, with special 
care to dynamical neural systems, is also being studied. Finally, the 
authors are investigating how to extend the present approach to the 
case of multirate systems, as recently done [6] for calculation of first 
derivatives. 
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