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ABSTRACT

This work deals with maximum likelihood (ML) direction of ar-
rival (DOA) estimation of multiple moving sources. Based on the
recursive EM algorithm, we develop two recursive procedures to
estimate the time-varying DOA parameter. The first procedure re-
quires no prior knowledge about the source movement. The second
procedure assumes that the motion of moving sources is described
by a linear polynomial model. The proposed recursion updates the
polynomial coefficients when a new data arrives. The suggested
approaches have two major advantages: simple implementation
and easy extension to wideband signals. Numerical experiments
show that both procedures provide excellent results in a slowly
changing environment. When the DOA parameter changes fast
or two source directions cross with each other, the procedure de-
signed for a linear polynomial model has a better performance than
the general procedure.

1. INTRODUCTION

The problem of estimating direction of arrival (DOA) of plane
waves impinging on a sensor array is of fundamental importance
in many applications such as radar, sonar, geophysics and wireless
communication. The maximum likelihood (ML) method is known
to have excellent statistical performance and is robust against co-
herent signals and small sample numbers. However, the high com-
putational cost associated with ML method makes it less attractive
in practice.

To improve the computational efficiency of the ML approach,
numerical methods such as the expectation and maximization (EM)
algorithm [6] was suggested in [7]. Recursive procedures based on
the recursive EM algorithm for estimating constant DOA param-
eters were discussed in [5] [9]. Similar procedures for tracking
multiple moving sources were studied in [5] [8]. In [8], the au-
thors focused on narrow band sources and assumed known signal
waveforms.

The recursive EM algorithm is a stochastic approximation pro-
cedure for finding ML estimates. It was first suggested by Titter-
ington [11]. As it was pointed out by Titterington, recursive EM
can be seen as a sequential approximation of the EM algorithm.
The gain matrix of recursive EM is the inversion of the augmented
data information matrix of EM. Since the augmented data usu-
ally has a simple structure, the recursive EM algorithm is very
easy to implement. For constant parameter, estimates generated
by recursive EM are strongly consistent and asymptotically nor-
mally distributed. For time-varying parameter, the tracking ability
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of a stochastic approximation procedure depends mainly on the
dynamics of the true parameter, gain matrix and step size [1].

Based on recursive EM, we shall derive two recursive proce-
dures for estimating time-varying DOA. The first procedure does
not assume any motion model. The only condition required is that
the unknown parameter changes slowly with time. The second
procedure assumes that the time-varying DOA parameter 6(t) is
described by a linear polynomial of time. This model is impor-
tant since a smooth function 6(t) can be approximated by a local
linear polynomial in a short time interval [10]. The procedure re-
ported in [5] employs a decreasing step size to estimate the polyno-
mial coefficients. However, since the DOA parameter 8(¢) and the
log-likelihood function change with time, a decreasing step size
may not capture the non-stationary feature of the underlying sys-
tem over a long period. To overcome this problem, we suggest a
constant step size to be used in the algorithm. It is noteworthy that
both procedures are aimed at maximizing the expected concen-
trated likelihood function. Introducing a linear polynomial model
implies increasing the dimension of the parameter space. With the
additional degree of freedom, the procedure designed for a linear
polynomial model should perform better than the general one.

This paper is outlined as follows. We describe the signal model
and the recursive EM algorithm briefly in section 2 and section 3.
Section 4 presents two recursive procedures for localizing moving
sources. Simulation results are discussed in section 5. We give
concluding remarks in section 6.

2. PROBLEM FORMULATION

Consider an array of IV sensors receiving M far field waves from
unknown time-varying directions 0(t) = [01(t), ..., 0 (t)]. The
array output () € C™*! at time instant ¢ is expressed as

x(t) = H(O))s(t) +u(t), t=1,2,... (1)

where the steering matrix
H(0(t)) = [d(0:(2)) ... d(0r(t))]

consists of M steering vectors d(0m (t)) € CN*, (m =1,..., M).
The signal waveform s(t) = [s1(t),...,sm(t)]} € CM*! s
considered as unknown and deterministic. (-)” denotes vector
transpose. The noise process u(t) € CV*! is independent identi-
cally complex normally distributed with zero mean and covariance
matrix vI, where v represents the unknown noise spectral param-
eter and [ is the identity matrix.

c CNxM )
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Our central interest is to estimate the time-varying DOA pa-
rameter 6(t) recursively from the observation x(¢). We assume
that a good initial estimate §° is available at the beginning of the
recursion.

3. RECURSIVE PARAMETER ESTIMATION USING
INCOMPLETE DATA

The recursive EM algorithm suggested by Titterington is a stochas-
tic approximation procedure for finding maximum likelihood esti-
mates (MLE). As pointed out in [11], there is a strong relationship
between this procedure and the EM algorithm [6]. Using Taylor
expansion, Titterington showed that approximately, recursive EM
maximizes EM’s augmented log-likelihood sequentially. The un-
known parameter is considered as constant in [11]. In the fixed pa-
rameter case, a properly chosen decreasing step size ensures strong
consistency and asymptotic normality of the algorithm [4] [11].

Suppose x(1),x(2), ... are independent observations, each
with underlying probability density function (pdf) f(x; ), where
¥ denotes an unknown constant parameter. The augmented data
associated with EM y(1),y(2), ... are characterized by the pdf
f(y;9). Let 9* denote the estimate after ¢ observations. The
following procedure is aimed at finding the true parameter 9 which
may coincide with the MLE in the asymptotic sense

9 =9t + o IEM(ﬁt)717(m(t)v'9t) ©)

where ¢, is a decreasing step size and
e (9') = E [~ Vo V5 log f(y:9) | 2(1), 9] lo—or , )

y(z(t),9") = Vg log f(x(t);9)]s—s 5)

represent the augmented information matrix and gradient vector,
respectively. Vg is a column gradient operator with respect to 1.
Under mild conditions, the estimates generated by (3) are strongly
consistent and asymptotic normally distributed. The augmented
data y usually has a simpler structure than the observed data x.
Therefore, the augmented data information matrix Zgas(9") is
easier to compute and invert than the observed data information
matrix Z(9") = E [~V Vg log f(z;9) | @(t),9] [s—s¢. Re-
placing Zrar (91) ! with Z(9*) ™! in (3), we obtain the optimal
convergence rate in the Cramér-Rao sense at a much higher com-
putational expense. Using Zgas(9) ™' as the gain matrix is a
trade-off between convergence rate and computational effort.

When the parameter of interest varies with time, a decreas-
ing step size such as ¢ = t~%,1/2 < a < 1 can not capture
the non-stationary feature of the underlying system. A classical
way to overcome this difficulty is to replace e; with a constant step
size e. In general, a large step size reduces the bias and increases
the variance of the estimates [1]. A small step size has the oppo-
site effects. Since the time varying parameter 9 (¢) may follow a
complicated dynamics, an exact investigation of the convergence
behavior of the algorithm

9 =9t ¢ GIEM(ﬁt)AV(m(t)vﬁt) ©)

is only possible when certain assumptions are made on the pa-
rameter model. More discussion about convergence properties of
a stochastic approximation procedure in a non-stationary environ-
ment can be found in [1].

4. LOCALIZATION OF MOVING SOURCES

The recursive EM with constant step size (6) is applied to estimate
the time-varying DOA parameter 6(¢). We start with a general
case in which 6(t) changes slowly with time and then considers a
linear polynomial model

9(t)=00—|—t01 s (@)

where 90 = [001, ey QOA{]T and 91 = [0117 ey GlM]T. The
linear polynomial (7) can be seen as a truncated Taylor expansion
which gives a good description for the source motion in a small
observation interval [10].

4.1. General Case (REMI)

From the signal model in section 2, we know that the array ob-
servation x(t) is complex normally distributed with the the log-
likelihood function

logf(:c(t);ﬁ):—[Nlogw—i—Nlogu (8)

2 (@ ()~ H(O(0)s(1)) " (w()~ H (0(1)s(0)]
where 9 = [0(t)T,s(t)”,v]" and (-)* denotes the Hermitian
transpose.

According to (6), all elements in 19 should be updated simulta-
neously. To avoid a complicated gain matrix, the procedure (6) is
only applied to 6(t). The estimate for signal waveform and noise
level, denoted by s* = [s%,s5,...,5%]7 and v/* respectively, are
updated by computing their ML estimates once the current DOA
estimate is available. In the following, we omit the dependence of
DOA parameter on ¢ and use 0 instead of 0 ().

Taking the first derivative of f(x(t);®3) with respect to 0y,
we obtain the mth element of the gradient vector v(x(t),9") [4]

2
[(@(®).9")],, = =Re |(@(t)=H(6")s")" (d (0})sh)]
)
where d' (0m) = 0d(0:)/ 0.
The augmented data y(¢) is obtained by decomposing the ar-
ray output into its signal and noise parts. Formally it is expressed
as

y(0) =[y: (0" -y, @O,y (10
The augmented data associated with the mth signal

Y (1) = d(On)sm (1) + wm(t) (1n

is complex normally distributed with mean d(6:)sm (t) and co-
variance matrix vy, I with the constraint %:1 Vm = v. A con-
venient choice is v, = v/M. The corresponding log-likelihood
is given by

M

logf(y(t);9) = —Z [Nlogﬂ'—I—Nlog(l//M) (12)

m=1

%(ym(t) = d(0m)5m (1)) (Y, (£) = d(Om) s (1)) |

v

+

Since the signals are decoupled through the augmentation scheme
(10), Tem (19t) isa M x M diagonal matrix when we only con-
sider the DOA parameters 6. According to (4), the mth diagonal
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element of Zg s (97) is given by

2 /7
st (9 = = Re | = (d (01)s1) (@(t)— H (6")s")
+M|d (0451, (13)
where d (6,,) = 9°d(0,) /062,
Once the estimate @**! is available, the signal and noise pa-

rameters are obtained by computing their ML estimates at current
0" and x(t) as follows

sttt H(O0"H*x(t), (14)
t4+1 1 t4+1y L A~
v St [P(e )1Ca (1), (15)

where H (0'71)# is the generalized left inverse of the matrix H (8*+!),

P(0'1)+ = I — P(0'*!) is the orthogonal complement of the
projection matrix P(8't!) = H(8'™H)H (6'T))# and C (t) =
x(t)x(t)™.

4.2. Linear Polynomial Model (REM II)

We consider moving sources described by the linear polynomial
model (7). The recursive EM algorithm is applied to estimate 8¢
and 6. For notational simplicity, we define the extended DOA pa-
rameteras @ =[©7,... .07 ..
Similarly to the procedure presented in subsection 4.1, recursive
EM is only applied to update the DOA parameter ©, rather than
9 =[07T,st)",v]T.

Based on this approach, the 2mth and (2m + 1)st element of
the gradient vector ~(z (t),9") are given by [5]

%Re |(@(t) — H(©")s")"(d (©},)sh)] (16)
and o
“Re [((t) - H(©)s''(d (©))s0)] . (1)

respectively, where d'(-) = 9d(60m)/00m. Note that the time-
varying 0(t) is calculated at the current ®" according to the linear
model (7).

Because each source is described by two unknown parameters,
the augmented data information matrix becomes block diagonal.
For a higher computational efficiency, rather than using this block
diagonal matrix in the recursion directly, we consider an alterna-
tive matrix Zg s (91), which is the diagonal part of Zgas (9°).

Let d’ (-) = 0°d(0:,)/0602,. According to the augmentation
scheme specified above, the 2mth and (2m + 1)st diagonal com-
ponents of fEM(Gt) are given by

12

2 Re[(-d (@ )5t (w(t) ~ H(©")s1,) + M]|d (©%,)s0 ]

(18)
and
2t "t Vot VH ty t @t Vot (12
7Re[(—az (©L)s8 ) (m(t)— H(©)s,)+M]|d (O, )sL, | ]
19
respectively.

Similarly to the general case, the signal and noise parameter
are updated by (14) and (15) once the estimate O**! is available.
The parameter 8™ in (14) and (15) is replaced by @11,

,©%]F where ©,,, = [fom,01m] " -

5. NUMERICAL EXPERIMENTS

We test the proposed algorithms by numerical experiments. The
narrow band signals generated by three sources of equal power
are received by a uniformly linear array of 15 sensors with inter-
element spacings of half a wavelength. The Signal to Noise Ratio
(SNR), defined as 10log(sm(t)?/v), m = 1,2,3, is kept at 20
dB. The motion of the moving sources is described by a linear
polynomial model (7). Two different parameter sets {6o, 01} are
assumed in the experiments. Each experiment performs 200 trials.

In the first experiment, we consider fast moving sources. The
true parameters are given by 8o = [10°, 60°, 66°],0: = [0.6°, —
1.0°, 0.4°] where 6 is measured by degree per time unit. The
initial estimates for REM II are 8] = [8.5°, 58°, 68°], 87 =
[0.4°, — 0.8°, 0.3°]. The initial estimate for REM I is given by
05. Both algorithms use a constant step size e = 0.8. Fig. 1
presents the true values of 0(¢) and an example of estimated tra-
jectories obtained by REM I and REM II. Note that two source
directions cross with each other at ¢ = 32. Obviously, REM I can
not follow fast moving sources at all. In contrast, the estimated
trajectory obtained by REM Il is very close to the true one. Fig.
2 shows the mean square errors (RMSE) of the DOA estimates.
Since REM 1 fails to track the moving sources, the corresponding
RMSE grows with increasing time. On the other hand, the RMSE
associated with REM II decreases rapidly at the beginning of the
recursion and then increases slightly. From time instant ¢ = 20 to
t = 50, the RMSE does not vary much.

The second experiment involves three slowly moving sources.
The true parameter values are given by 8 = [30°, 50°, 62°],
6, = [0.06°, —0.1°, 0.05°]. The initial estimates for REM II
are 09 = [29°, 49°, 61°], 09 = [0°, 0°, 0°]. The initial estimate
for REM I is given by #9. Both algorithms use a constant step
size ¢ = 0.6. Fig. 3 presents the true and estimated trajectories.
Note that two source directions cross with each other at ¢t = 126.
The estimated trajectory by REM 1 is close to the true one when
no crossing happens. Between ¢ = 100 and ¢ = 230 where two
source directions cross with each other, the estimated trajectories
associated with the first two sources do not get close to each other.
Instead, they just depart in the vicinity of ¢ = 126. For the same
scenario, REM II provides a more accurate estimate. Fig. 3 shows
that the crossing point causes a large deviation of the trajectories.
Due to a less accurate estimate for 81, REM II leads to a slightly
worse estimate than in the first experiment. Fig. 4 shows that the
RMSE increases after the crossing point ¢ = 126 in fig. 4. Both
algorithms perform equally well in this scenario.

From simulation results we conclude that REM I is suitable
for tracking slowly time-varying DOA parameters, REM II per-
forms well for both slowly and fast moving sources. In simulation
we also observe that both procedures generate accurate estimates
when there is no crossing point. When two source directions co-
incide with each other, the steering matrix H (6(t)) becomes rank
deficient. The signal waveform s(t) can not be determined prop-
erly. Consequently the DOA parameter can not be estimated ac-
curately. Since REM II incorporates a linear polynomial model
describing the moving sources, it has a better tracking ability than
REM I when this critical situation occurs.
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Fig. 1. True trajectory (—) and estimated trajectories by REM I (—.) and
REM II (——).
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Fig. 2. RMSE vs time. SNR=20 dB.
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Fig. 3. True trajectory (—) and estimated trajectories by REM I (—.) and
REM II (——).
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Fig. 4. RMSE vs time. SNR=20 dB.

6. CONCLUSION

We addressed the problem of localizing multiple moving sources.
Two recursive procedures are proposed to estimate the time-varying
DOA parameter. We applied the recursive EM algorithm to a gen-
eral case in which the motion of the sources is arbitrary and a spe-
cific case in which the motion of sources is described by a linear
polynomial model. Because of the simple structure of the gain
matrix, the suggested procedures are easy to implement. Further-
more, extension of our approaches to broadband signals is straight-
forward. Numerical experiments showed that our approaches pro-
vide excellent results in a slowly changing environment. When the
DOA parameter changes fast or two source directions cross with
each other, the procedure derived for a linear polynomial model
has a better performance than the general procedure.
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