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Abstract — This paper deals with reconstruction of non-
uniformly sampled bandlimited continuous-time signals
using time-varying discrete-time FIR filters. The points of
departures are that the signal is slightly oversampled as to
the average sampling frequency and that the sampling
instances are known. Under these assumptions, a representa-
tion of the reconstructed sequence is derived that utilizes a
time-frequency function. This representation enables a
proper utilization of the oversampling and reduces the
reconstruction problem to a design problem that resembles
an ordinary filter design problem. Furthermore, for an
important special case, corresponding to a certain type of
periodic nonuniform sampling, it is shown that the recon-
struction problem can be posed as a filter-bank design prob-
lem, thus with requirements on a distortion transfer function
and a number of aliasing transfer functions.

1. INTRODUCTION

Nonuniform sampling occurs in many practical applications
either intentionally or unintentionally [1]. An example of the
latter is found in time-interleaved analog-to-digital convert-
ers (ADCs) where static time-skew errors between the dif-
ferent subconverters give rise to a class of periodic
nonuniform sampling [2], see Fig. 1(c).

Regardless whether the continuous-time (CT) signal, say
x,(?), has been sampled uniformly [Fig. 1(a)], producing the
sequence x(n) = x,(nT) or nonuniformly [Fig. 1(b)], produc-
ing the sequence x(n) = x,(¢,), it is often desired to recon-
struct x,(¢) from the generated sequence of numbers. Thus,
in the nonuniform-sampling case, it is desired to retain x,(7)
from the sequence x(n). This can, in principle, be done in
two different ways. The first way is to reconstruct x,(¢)
directly from x;(n) through CT reconstruction functions.
Although it is known how to do this in principle (see e.g.
[3]-[7]), problems arise when it comes to practical imple-
mentations. In particular, it is very difficult to practically
implement CT functions with high precision. It is therefore
desired to do the reconstruction in the digital domain, i.e., to
first recover x(n). One then needs only one conventional dig-
ital-to-analog converter (DAC) and a CT filter to obtain
x,(?), which are much easier to implement than general com-
plicated CT functions.

Recovering x(n) from x(n) in the digital domain can in
principle be done by digital reconstruction functions
obtained through sampling of a corresponding CT recon-
struction function. However, the CT reconstruction func-
tions are generally noncausal (two-sided) functions which
therefore must be truncated in order to make the correspond-
ing digital reconstruction system practically implementable.
This truncation causes reconstruction errors that are not eas-
ily controlled and one should therefore seek for other tech-
niques. One faces a similar situation when designing digital
filters. It is well known that filters designed through trunca-
tion of infinite-length impulse responses (referred to as win-
dowing techniques) exhibits large errors (referred to as
Gibb’s phenomenon) in the frequency domain around the
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igure 1. (a) Uniform sampling. (b) Nonuniform sampling.
¢) Periodic nonuniform sampling.

cut-off frequency. Although different weights (windows)
can improve the situation, it is recognized that other design
methods are usually preferred [8]. When designing filters,
one does normally not attempt to approximate a desired
function over the whole frequency range |wT|< 7w, T
being the frequency variable. Instead, one allows certain
region(s) referred to as the transition region(s) where no
requirements are stated. In this way, one can in the remain-
ing frequency regions fully control the filter performance. It
is therefore reasonable to take the same action when recon-
structing nonuniformly sampled signals. That is, instead of
approximating perfect reconstruction (PR) in the whole fre-
quency range |@7| < 7, in which case one is doomed to face
problems, one should a priori assume a small oversampling
factor in which case PR needs to be approximated only in
the region |@7| < @, T < 7. In this way, one can fully con-
trol the reconstruction by properly designing the reconstruc-
tion system. For example, the method introduced in [9]
employs causal interpolation functions and it was observed
experimentally that the reconstruction deteriorates when the
bandwidth approaches 7, which further motivates the bene-
fits of allowing a slight oversampling.

Although oversampling itself is undesired since it gener-
ates more samples than necessary for reconstruction,
according to the Nyquist sampling theorem, it is known that
a slight oversamling is required for practical implementation
of conventional ADCs and DAC:s. It is therefore conjectured
that a slight oversampling is also required in order to practi-
cally implement a device that reconstructs nonuniformly
sampled signals. This is of course not a new paradigm but it
seems that it is often unsatisfactorily handled when it comes
to analysis, design, and implementation of practical recon-
struction algorithms.

This paper deals with reconstruction through time-vary-
ing FIR filters. The point of departure is a bandlimited CT
signal that is nonuniformly sampled and slightly oversam-
pled as to the average sampling frequency, the reason for the
latter assumption being as outlined above. It is further
assumed that the sampling instances are known. Under these
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assumptions, a representation of the reconstructed sequence
is derived that utilizes a time-frequency function. This repre-
sentation enables a proper utilization of the oversampling
and reduces the reconstruction problem to a design problem
that resembles an ordinary filter design problem. Further-
more, in an important special case, corresponding to a cer-
tain type of periodic nonuniform sampling, it is shown that
the design problem can be posed as a filter-bank design
problem, thus with requirements on a distortion transfer
function (that should approximate one) and a number of
aliasing transfer functions (that should approximate zero).

A FB formulation of the problem has been done earlier
in [7], but there is a major difference between the formula-
tion in that paper and the one in this paper. In [7], it is
observed that the nonuniformly sampled signal can be
expressed with the aid of a regular decimated analysis filter
bank with analysis filter frequency responses that are fixed
and determined by the sampling instances. It is then shown
that x(n) can be retained using a synthesis filter bank with
ideal non-causal multilevel filters. The issue of using practi-
cal causal synthesis filters approximating the ideal ones was
not treated though. That is, it is not known how well a “prac-
tical version” of that solution will behave. In this paper, the
FB formulation contains adjustable analysis filters but fixed
and trivial synthesis filters (pure delays). Here, the problem
is thus to properly design the analysis filters which, for
many sampling patterns, can be done as good as desired
with an acceptable filter order, due to the fact that a slight
oversampling is used. Oversampling is not utilized in [7]
which means that one most likely will face problems when
designing practical causal synthesis filters approximating
the ideal multilevel filters. Oversampling was utilized in the
special class of synthesis FB proposed in [10], in which case
PR can be approximated as close as desired.

Following this introduction, the paper first recapitulates
uniform sampling in Section 2, the reason being that the
reconstruction here aims at retaining x(n) from x;(n), not
x,(f) directly. Section 3 considers nonuniform sampling and
reconstruction using time-varying FIR filters. Section 4
studies the special case of periodic nonuniform sampling
and shows how the design problem can be posed as a FB
design problem. Finally, Section 5 concludes the paper.

2. UNIFORM SAMPLING

In uniform sampling, the sequence x(n) is obtained by sam-
pling the CT input signal x,(#) uniformly at the time
instances n7, for all integers 7, i.e.,

x(n) = x,(nT), n=..,-2,-1,0,1,2, ... (D
where T'is the sampling period and fgumple = 1/7 is the sam-
pling frequency. The Fourier transforms of x(n) and x,(¢) are
related according to Poisson’s summation formula as

oo

x@on = 23 x(jo- ) @

Since the spectrum of x(n) is periodic with a period of 27
Q2n- perlodlc) with respect to @7, it suffices to consider
X(e/OT ) in the interval —7< @7 < 7. Throughout this
paper, it is assumed that x,(7) is bandlimited according to

X,(jo) =0, 0<o,<|a, w,<n/T 3)
(see also Fig. 2(a)). That is, the Nyquist criterion for sam-
pling with a sampling frequency of 1/ T without aliasing is
fulfilled. In this case,
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Figure 2. Spectra of a bandlimited signal x,(¢) and the sequence
x(n) = x,(nT). (Uniform sampling).

; 1 .
X(e/0Ty = TXa( jw), -n<wlT<r 4)
(see also Fig. 2(b)). Equation (4) implies that x,(¢) can be
recovered from x(n). In practice, this is done using a DAC
followed by an CT reconstruction filter. We also note that
X,(?) is oversampled unless @, = /T .

3. NONUNIFORM SAMPLING
Throughout this paper, it is assumed that the nonuniform
sampling of the CT signal x,(¢) is done in such a way that
the so obtained sequence, say x,(n), is given by

= x,(1,) )

x](")
where
t,=nT+egT (6)

with €, T representing the distance between the “nonuni-
form sampllng instance” ¢, and the “uniform sampling
instance” nT . The average sampling frequency is thus still
1/T. Tt is also assumed that the sampling instances are dis-
tinct, i.e., f, #1, ., n#m,and that 1, <t .n<m.

Given x1(n), a new sequence, y(n) is formed through
some reconstruction formula. It is desired to achieve y(n) =
x(n) because, then, x,(¢) can due to (4) be recovered using
conventional reconstruction methods for uniformly sampled
signals. The equality y(z) = x(n) corresponds in the fre-
quency domain to Y (e/®T) = X(e/®T) If these equations
hold, the reconstruction system is said to be a perfect recon-
Struction system.

In this paper, the reconstruction is performed using a
time-varying FIR filter characterized by the impulse
responses £, (k) . It is assumed here that the order of the FIR
filter is 2V and thus even. It is convenient and possible to let
the FIR filter be noncausal which implies that %, (k) in this
even-order case is non-zero for k = —N, — N + I, ,N.In
a practical implementation, the corresponding causal filter is
obtained by simply introducing a delay of N samples. In the
odd-order case, one has instead k = -N,-N+1,...,N-1
ork =-N+1,-N+1,..., N, but that will not change the
principles dealt with in this paper. Henceforth, only the
even-order case is therefore considered for the sake of sim-
plicity.

Under the above assumptions, y(n) is now formed
according to

N

D, (=K, (k) Y

k=-N

y(n) =

It is desired to select 4, (k) so that y(n) approximates x(n)
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as close as possible (in some sense). To see how to choose
h,(k), x;(n) is first written in terms of the inverse Fourier
transform of x,(#) by which we obtain, due to (3), (5) and (6),

@y
x,(n) = zin _[ T x(jw)e/OTrda 8)

_a)o

Inserting (8) into (7), and interchanging the summation and
integration, one obtains

2]
v = 5= [ H O X oo ©)
o,
where
N
H,(e®T) = Y h,(kye /T*= &0 (10)
k=-N
When (4) holds, (9) can equivalently can be written as
w,T
() = 5= [ H @)Xl d(or) (1)
~w,T

Equation (11) represents y(n) with the aid of the functions
H, (el ®TY) which can be viewed either as an infinite set of
frequency functions or one time-frequency function. Fur-
ther, x(n) can be expressed in terms of its inverse Fourier
transform according to

w,T
x(n) = 517} J' X(e/OT)eiOTng(oT)

~w,T

(12)

Comparing (11) with (12), it is seen that perfect reconstruc-
tion is obtained if
Hn(eij) =1, olTe[-0,T, o,T] (13)
for all n.
Defining the error e(n) as e(n) = y(n)—x(n) one obtains
from (11) and (12) that

w,T
e(n) = %t J (H,(e/®T) — 1) X(e/®T)e/Trd(wT) (14)
—w,T

Apparently, e(n) = 0 in the PR case since, then,
Hn(e/‘”T) = 1. In practice, Hn(ef‘*’T) can only approxi-
mate one in the frequency range of interest. The goal is then
to determine the coefficients %, (k) so that the error e(n) is
minimized according to some criterion. A problem is that
e(n) does not only depend on 4, (k) but also on X(e/ oT)y
which means that one generally must have knowledge about
the input signal spectrum in order to determine % (k) in the
best possible way. If one does not have complete ?(nowledge
about X(e/®T) which often is the case in practice, one has
to accept a suboptimum solution instead.

The simplest way to obtain a suboptimum solution is to
determine each (k) separately so that each H”(eJ“’T)
in (10) approximates one in the frequency region
oT € [-o)T, 0yT], 0T <7, as good as possible accord-
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Figure 3. Illustration (for one value of #) of reduced reconstruction
error when the filter order 2N increases. Solid line: 2N = 16.
Dashed line: 2N = 32.

ing to some criteria. The rationale behind this is that, regard-
less of X(e/®T), one can generally say that the closer
H,(e/®T) is to one the closer e(n) is to zero, with “close”
being interpreted in a wide sense. By utilizing the represen-
tation of y(n) in (11), this design problem resembles an ordi-
nary filter design problem. One difference is however that
the functions H, (e’ oTY) are unconventional in the sense
that they make use of non-integer delays [see (10)]. (The
non-integer delays are merely a consequence of the nonuni-
form sampling and the problem formulation; thus, they are
not actually implemented which of course would cause
problems.) Another difference is, of course, that a new
design has to be done for each n. However, in an important
special case, where the sampling is periodically nonuniform,
it suffices to design only a few filters. In this case, the design
problem can be conveniently posed as a FB design problem
which eases the design and analysis. This is the topic of the
next section.

Figure 3 illustrates that the reconstruction error reduces
as the filter order increases. The sampling instances are here
as in (6), with & T being randomly chosen numbers in the
interval (—0.57, 0.57)!, whereas w,T = 0.97. The filters
have been designed using a least-squares approach where
each (k) is analytically computed through matrix inver-
sion. Due to the limited space, design details are omitted in
this paper but will instead be treated in another paper.

4. PERIODIC NONUNIFORM SAMPLING

An important special case of nonuniform sampling occurs
when the distances between the “nonuniform sampling
instance” €, T exhibits periodicity according to

(15)

for all n, with M being the period. In this case, the sampling
is said to be periodic nonunifom sampling with period M.
An example is given in Fig. I(c) with period M = 2,
dy=¢7T = ¢, T and d| = T =¢,, T, for all
ntegers m.

When ¢, T satisfies (15), it is obvious that /,(k) and
H, (e’ ®Ty exhibits the same periodicity, i.e.,

h, (k) = h, . (k)

gnT = 8n+MT

(16)
and
(17)

for all n. This makes it possible to pose the design problem as
a FB design problem. To see this, consider first the case
where the output y(n) is obtained by applying x(n) to a time-

H,(e197) = H, . 1(e®T)

1. In the literature, one sometimes finds the assertion that |g,7]<0.257 must
be fulfilled to enable reconstruction but this is generally not required. In
particular, when a slight oversampling is allowed, one circumvents many of
the problems associated with reconstruction of critically sampled signals.
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varying filter described by the impulse responses g, (k) , thus
N

Y x(n—kg, k) (18)
k=-N

Assume now that g, (k) satisfies g,(k) = g, 1,(k). By
making use of the properties of downsamplers and upsam-
plers [11], one can in this case readily establish that y(n)
in (18), and thus Fig. 4(a), is identical to the output y(n) in
the maximally decimated FB shown in Fig. 4(b). That is, the
output is obtained as the output of a maximally decimated
FB with the analysis filters z"G,(z), with G,(z) being the
transfer function of g, (k), and with the trivial synthesis filters
F,(z) = z " In the frequency domain, the relation between
the input and output can therefore be expressed as [11]

M-1
Y(eij) = z Vm(ej(uT)X(ej(wT—anm/M)) (19)
m=0
where
1M—l
Vm(eja)T) — M 2 eijann/MGn(ej(a)Tf271:m/M)) (20)
n=0

with Gn(e/ ®T) being the Fourier transform of g, (k), thus
satisfying

G, (e/°T) = G, 1, (e/?T) (1)

for all n. The term Vo(e/mr ) is the distortion function
whereas the remaining Vm(e-f“’T), m=1,2, .. M-1, are
aliasing functions. Perfect reconstruction is obtained when
Vo(e/®T)y = 1 and ¥V, (e/¢T) = 0,m=1,2, ..., M-1.

Further, utilizing the inverse Fourier transform, the out-
put ¥(n) in Fig. 4(b) can be expressed as

o, T
y(n) = 2—1]-1 J G, (e/T)X(e/OT)ei®Tnd(wT)  (22)
—wOT

Comparing (22) with (11), it is seen that the outputs in the
two cases are identical provided that

G, (e/®T) = H, (/) (23)

Hence, when the sampling is periodically nonuniform, the

reconstruction using time-varying filters can be conveniently
represented by the FB in Fig. 4(b) with analysis filters as
given by (23) and (10). The design problem can in this case
be posed as a FB design problem where the goal is to deter-
mine the M impulse responses & (k),n =0, 1, ..., M—1, so
that VO(erT) and Vm(eJ“’T =0,m=1,2, .., M-1
approximate one and zero, respectively, as good as desired
according to some criteria. Here, the problem is thus to
properly design the analysis filters since the synthesis filters
are fixed to pure delays. As already discussed in the intro-
duction, this is different from the FB formulation in [7]
where the analysis filters are fixed and the synthesis filters
are to be designed. Another difference is, as mentioned ear-
lier, that the analysis filters are here unconventional in the
sense that they make use of non-integer delays [see (10)].

Finally, it is stressed that the FB in Fig. 4(b) is used here
only with the purpose of easing the analysis and design of
the reconstructing system. That is, y(n) is not obtained by
implementing the FB which is obvious because that assumes
that we already have available the “uniform samples” x(n)
which are precisely the samples we want to recover from the
“nonuniform samples” x{(n). The output y(n) is of course
still obtained from (7) whereas the FB in Fig. 4(b) is a con-
venient way of representing the reconstruction in the case of
periodic nonuniform sampling.

5. CONCLUDING REMARKS

The representation of the reconstructed sequence derived in
this paper enables a proper utilization of the oversampling
assumed and reduces the reconstruction problem to a design
problem that resembles an ordinary filter design problem.
This representation is thus a useful starting point for the anal-
ysis and development of design techniques of different
classes of input signals and nonuniform sampling patterns.
Due to the limited space, design issues were not included in
this paper but will be considered in future papers. However,
for one type of sampling pattern, it was illustrated by means
of an example how the reconstruction error reduces as the fil-
ter order increases, using a least-square design technique,
details of which will be published elsewhere.
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