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ABSTRACT

We present a new method for optimizing two-dimensional
IIR filters with respect to a p-norm error criterion, espe-
cially for large p, when quasi-equiripple filters are obtained.
We combine a Gauss-Newton convexification of the criterion
with the iterative reweighted least-squares (IRLS) algorithm.
Stability is obtained by using 1-D or 2-D convex stability
domains based on a positive realness description. A final op-
timization of the numerator, keeping the denominator fixed,
allows more freedom in choosing the value of a key parame-
ter.

1. INTRODUCTION
A quarter plane 2-D IIR filter has the transfer function
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with ago = 1. Optimization of 2-D IIR filters is a challenging
problem due to at least two factors. The first is its complexity,
which becomes significant even for moderate degrees. The
second is the difficulty in guaranteeing the stability of the
filter without imposing too restrictive constraints that might
make unreachable many near-optimum filters. If the factor-
ization 4(z1,2z2) = A1(z1)A42(z2) is possible, then the denom-
inator is separable; in this case, complexity is reduced and
stability easier to enforce.

Given a complex desired frequency response D(wy, ay),
with Wy, w, € [—11, 71, whose values are Dy, ¢, on a grid of
frequencies defined by w (¢1), @y (£2), 6y =1:L1, b =1:
L,, the design problem is to find a filter (1) whose coefficients
minimize the p-norm error
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where A(w, w,) and B(w, w,) are the frequency responses
of the denominator and numerator of (1). The numbers
A¢, 6, > 0 represent weights. For further use, we denote

A, 0, =A@ (€1), wy(£)) and By, ¢, = B(awn (61), w2 (£2))-

Work supported by Academy of Finland, project No. 44876 (Finnish
Centre of Excellence Program (2000-2005)). B.Dumitrescu is on leave from
the Department of Automatic Control and Computers, ”Politehnica” Univer-
sity of Bucharest, Romania.

We are interested mainly in the optimization of (2) for
relatively large values of p, when the resulting filter is almost
equiripple and thus (2) can replace a Chebyshev criterion.

Although the research on optimization methods for 2-D
IIR filter design is more than 30 years old (see e.g. [2]), there
are relatively few results. Due to the easier approach and to
the fact that they cover the class of quadrantally symmetric
responses, separable filters received more attention; among
the recent papers, good results are obtained in [7, 8]. The
trend over the years has been to go from the use of general
nonlinear optimization methods to specific methods; in the
latest years, several algorithms appealed to advanced con-
vex optimization techniques like semidefinite programming
(SDP) [11].

The contributions of this paper are

e to adapt the iterative reweighted least squares (IRLS) al-
gorithm of Burrus ef al [1], for the p-norm optimization
of 2-D IIR filters with fixed denominator;

e to combine i) the IRLS algorithm, ii) the Gauss-Newton
optimization principle [5, 7, 4], and iii) convex stability
domains in 1-D [4] or 2-D [3], into a single algorithm for
2-D IIR filter (with separable or nonseparable denomina-
tor) optimization; the algorithm is iterative and in each
iteration an SDP problem is solved.

The two above algorithms are presented in sections 2 and 3,
respectively. We run them in reversed order, i.e. the second
algorithm to obtain a full filter, then the first to further op-
timize the numerator. Experimental results are presented in
section 4.

2. OPTIMIZATION OF 2-D IIR FILTERS WITH
FIXED DENOMINATOR

We assume in this section that the denominator A(z;,z,) of
the IIR filter (1) is given. Our purpose is to find the numer-
ator B(z1,z2) optimizing (2) for the given denominator. A
first remark is that in the least squares (LS) problem (when
p = 2), the optimal numerator can be found directly by solv-
ing (in LS sense) an overdetermined system of linear equa-
tions; we denote B = B;g(4,A) such an optimal numerator.
To extend the solution to an arbitrary p > 2, we adapt the
IRLS algorithm [1]. The resulting algorithm is presented
in figure 1. The main idea of IRLS is to solve successive
LS problems (step 5 in figure 1) where the weights are com-
puted as in (4) such to include the “more-than-square” part
of the p-norm criterion (2). The values of p start from 2
and grow in geometric progression with ratio y > 1 as in
step 3. The update (5) of the numerator uses a fixed con-

vex combination of the current numerator B") and the cur-
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Algorithm IRLS fixedA

Input: denominator A(z;,z,) and degrees m, m; of (1);
desired response D and the weights A from (2),
on a grid of frequencies with L; x L, points;
value p for the chosen norm;
ratio Y,
a tolerance €.

1. Set po = 2 and compute B()) = B;5(4,1).
2.Seti=1.
3. Put p; = min(ypi—1,p).
4. Compute new LS weights (for{; =1: Ly, 0, =1:1L;)
M [P
3 l1,0
/\51,32 = Afl.,/,z Df],[z - A(i[z (4)
5. Compute B = Bg(4,A).
6. Compute new numerator
B(i+1):;§+p"—23(i). 5)
pi—1  pi—1
7.1f 0 )
J(A4,BY p)—J(4,BUFD),
( p)—J( P _¢ ©)

J(4,BY, p) ’
stop. Otherwise, put i =i+ 1 and go back to 3.

Output: optimal numerator B = BU+1),

Figure 1: IRLS algorithm for the p-norm optimization of IIR
filters with fixed denominator.

rent LS solution B. The stopping decision may take different
forms; we have shown only a decision based on the relative
improvement of the criterion (2); in a practical implemen-
tation we should also impose a maximum number of itera-
tions; moreover, we should provide a treatment of the (rare)
situation when the value of the criterion is not improved (i.e.
J(4,BU) p)>J(4,BY, p)); we chose to stop the algorithm
and put B = BY).

If we want an (almost) equiripple filter, then we set p to
a value sufficiently large to give good approximation of the
minimax norm, but such that numerical errors do not occur in
the computation of (2); we consistently used p = 120; larger
values like e.g. 150 do not bring significant improvement and
may lead occasionally to numerical overflow. We also use the
criterion
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in the stopping decision (6).

An important practical issue is the choice of the ratio Y.
As reported by Burrus et al [1] for FIR filters, we have found
that there is a sufficiently large range of values that ensure
convergence; too small ¥y means slow decrease of the crite-
rion (and large number of iterations), while too large y may
lead to premature stop; we have used y = 1.15 with good
results.

The main problem in using the algorithm in figure 1 is to
choose the denominator 4. We will discuss this matter in the
following section.

We have also applied the iterative reweighting algorithm
used succesfully in [9] in the 1-D case with fixed denomina-
tor. The performance of the generalization to the 2-D case
was inferior to the algorithm in figure 1 in terms of values of
the criterion (2), convergence and execution time. We con-
clude that this approach needs further study and can be now
described with few words.

The underlying idea was to modify the weights of a LS
optimization criterion so that the final design becomes almost
equiripple, as proposed by Lim et al [6]. The weights corre-
sponding to large values of the error |Dy, o, — By, ¢, /A¢, 0,1
are increased, such that at the next iteration these errors de-
crease. Typically, the error surface has a fast varying shape;
thus, an envelope function is used instead of the exact error.
In 2-D, there are many options in computing the envelope
function; for example, we first compute the envelope along
the ) axis, then the envelope of this envelope along the
axis. Since the number of parameters to be optimized equals
the number of grid points, the number of parameters to be
optimized is very high, typically thousands. It is possible to
impose symmetry according to the shape of the desired re-
sponse; for example, when |D(wy, ay)| was circularly sym-
metric, we forced the weights with equal distance from ori-
gin to be equal. However, neither of these approaches gave
results worth reporting now.

3. ITERATIVE REWEIGHTING FOR IIR FILTERS

An algorithm for LS optimization of 2-D IIR filters. Sev-
eral recent methods for the LS optimization of 1-D IIR filters
[5, 7, 4] work upon the following general idea. We use the
notations for 2-D IIR filters, since they fit naturally in this
optimization framework. Suppose that, at iteration #, the cur-
rent filter parameters are A% and B(i); the filter is stable, i.e.
the zeros of A%) are inside the unit circle. Let D; be a convex
domain including 4®) and containing only stable polynomi-
als of degree (n1,n2). The cited methods seek polynomials
A4 and ABY) such that

1 I 1 1 1 1

J(A()+AA()’B()+AB()7P)<J(A()’B()7p)’ ™
AD A4 e D,
If the search is successful, they put 40+t1) = 40 4 A4(),
Bt = B() 1 AB® and continue similarly. A method is
characterized by the way in which a good descent direction
A4 ABU) is found and by the description of the stability
domain D;. The common feature of the methods is that (7) is
implemented via a convex optimization problem.

We propose the extension of the 1-D method from [4] for
the LS optimization of 2-D IIR filters. The stability domain
D; is built using a positive realness condition which may be
expressed as a linear matrix inequality (LMI) function of the
coefficients of the variable A4(). If the denominator is cho-
sen to be separable, then the stability domain is exactly that
presented in [4] (actually we have a domain for each of the
two monovariable factors of the denominator). For nonsep-
arable denominator, a 2-D positive realness stability domain
was presented in [3], also in the form of an LMI. In both
cases, we can enforce robust stability, in the sense that the
poles of filter are inside a circle of radius p < 1.
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A good descent direction is found using the Gauss-
Newton (GN) method, based on the first order approximation
of the filter (1) viewed as a function of its coefficients. We
denote A = [vec(A4®)T vec(ABD)T]T the vector of coeffi-
cients of the variable polynomials A4, AB(Y) (a 2-D poly-
nomial has a matrix of coefficients, which is vectorized in A).
Also, we denote VH[(:) , the gradient of (1) with respect to 4,

B, computed in 4%, BY), for the frequencies wy (£1), wy(£2).
An iteration of the GN method consists of solving

Ly L By)[ o) 2
mAin Z Z Aoty |Dey ity — (3)7 t— VTH/,EZ AL (®)
G=16=1 Ay,

st. AV 449 e p;

Moreover, in the GN method, the resulting A4®), AB® are
used as maximal steps in the descent direction and the opti-
mal steps are computed through line search.

With the ingredients described above, we have built an al-
gorithm for the LS design of 2-D IIR filters. In particular, the
problem (8) has an SDP form. A more detailed description
and numerical results will be reported elsewhere. We con-
centrate now on using the ideas exposed above for p-norm
optimization and especially for finding almost equiripple fil-
ters.

The GN_IRLS algorithm. The new idea we propose here
is to insert the Gauss-Newton iterations into the structure of
the IRLS method. In each iteration we perform a basic GN
step, computing updates of the current numerator and de-
nominator such that an LS criterion is improved. However,
the weights of the LS problem are updated like in the IRLS
method, with gradually increasing p. The new algorithm,
named GN_IRLS, is presented in figure 2.

Comparing it with the IRLS algorithm with fixed denom-
inator (figure 1) we remark that differences in steps 5, 6 hide
a similar principle. In IRLS fixedA the optimal solution of
the LS problem gives actually the descent direction B — B®);
then, the update (5) uses a fixed step of length 1/(p; — 1).
In GN_IRLS the descent direction is computed using a more
complex optimization problem, due to the presence of a vari-
able denominator (which imposes an approximate optimiza-
tion via a convex approximation of the original problem);
also, it is probably difficult to set a fixed step length, and so
the line search (9) must be performed; anyway, the complex-
ity of line search is not significant with respect to the com-
plexity of (8), thus a hypothetical fixed step would reduce
only slightly the complexity of an iteration of GN_IRLS, but
would probably increase the number of iterations. Finally, let
us remark that the initialization of GN_IRLS is trivial.

Continuation of GN_IRLS. We remark that, in each itera-
tion of GN_IRLS, we could optimize (in terms of a p;-norm
error) the numerator BU+!) keeping fixed the denominator
AU ysing e.g. IRLSfixedA. This would be a way to make
the algorithm more flexible; otherwise, only tandem updates
(9) with the same step length of the numerator and denomina-
tor are made. This may speed-up convergence, but it may be
costly in terms of complexity. We found more useful to reop-
timize only the final numerator. In other terms, after running
GN_IRLS, we input the obtained denominator to /RLS fixedA
and end up with a better numerator; we name GN_[RLS+ this
two-stage algorithm.

Algorithm GN_IRLS

Input: degrees my, my, ny, ny of (1);
D, A, Ly, Ly, p, Y, € asin IRLS fixedA

1. Set AV (z1,2z;) = 1 and compute B') = B; (4D ).
2 Setpo=2,i=1.

3. Put p; = min(yp;—1,p).

4, FOI‘@] =1 2L1,£2=12L2
)
1

compute new LS weights ;\gl £, using (4), with 4~ 4

instead of Ay, ¢, .
5. Compute A4, AB() by solving the GN optimization
problem (8), with weights A, /, .
6. Compute optimal step a* by solving the line search
problem

min J(AD +anda® BY +anBD) p)  (9)
s.t. 0<a<l1
7. Compute new filter
A = 40 4 g pqD | it = p) 4 g*ABW)

8. If

J(4D,BY, p) —J (40D B p)
J(A(l>7B(l)ap)

<€,

stop. Otherwise, put i =i+ 1 and go back to 3.

Output: 1R filter with 4 = A0+ B = Bl+1),

Figure 2: Gauss-Newton IRLS algorithm for the p-norm op-
timization of IR filters.

4. EXPERIMENTS

We implemented our algorithms in Matlab, using the SDP
library SeDuMi [10]. We present here a single example of
results, for a problem proposed in [8] for 2-D IIR filters with
separable denominator. The desired response is circularly
lowpass, with linear phase:

e /(MWtnw) if /a)12_|_0)22 < Wy,
0, if \/W? + 02 > w,.

The group delays are T} = 1, = 8, the passband and stopband
radii are @), = 0.571, @y, = 0.771. The weights in the criterion
(2) are 1 in the passband and stopband and zero in the transi-
tion band. The stability constraints are chosen such that the
poles are inside a circle with radius p = 1/0.8, like in [8].
The degrees of the filter (1) are m; =my =12, ny = ny = 8.
We took L| = L, = 80 and a uniform grid of frequency points
and also p = 120, £ = 107,

The main question is how the value of y affects the re-
sults. In IRLS fixed4 we always use y = 1.15. In figure 3 we
present the values of the Chebyshev criterion (3) obtained
after running GN_IRLS and GN_IRLS+. We remark that for
GN_IRLS it would be difficult to forecast the optimal value of
y; the final optimization of the numerator (with fixed denom-
inator) has a regularization effect; for GN_IRLS+ there is a

D(wi,wp) =
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Figure 3: Maximum ripple of 2-D IIR filters obtained by run-
ning GN_IRLS (circles) and GN_IRLS+ (stars).
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Figure 4: Magnitude of the frequency response.

range of values of y, from 1.02 to 1.12, in which the Cheby-
shev error has similar values, all below 0.008. We obtained
similar figures for other examples; as a general rule, y should
be given a higher value for smaller degrees of the filters. In
the same time, the values of y should be correlated with the
final value of the variable p;; a small final p; and conver-
gence of GN_[RLS indicate that a larger y might be better;
on the contrary, if the final p; is small and the method was
stopped due to an increase of the criterion (lack of conver-
gence), then a smaller y should be tried. We conclude that
there is a fairly large range of values y for which good filters
are obtained and that experimental tuning of y is simple.

The frequency response of the best filter obtained in the
considered example is shown in figures 4 (magnitude re-
sponse) and 5 (group delay). Our filter has better perfor-
mances than the design reported in [8]: 42.5dB vs. 39.4 stop-
band attenuation; 0.0074 vs. 0.0081 maximum amplitude de-
viation in passband. The maximmum group delay error in
passband is 0.526 (not given in [8]). The execution time of
our method is about 6 minutes (5 of them for GN_IRLS) on a
Pentium III PC at 1GHz, which compares favorably with the
27 minutes reported in [8] on a slightly slower computer.

5. CONCLUSIONS

We have presented a method for designing 2-D IIR filters us-
ing a p-norm criterion, with equiripple filters as main target.
We combined the Gauss-Newton and the iterative reweighted
LS [1] algorithms, using also LMI stability constraints based

Group delay
S0 2N W R OO N® O
A ) /

Wl

Figure 5: Group delay.

Frequency

on positive realness [4]. The new method produces good fil-
ters with convenient execution time.
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