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ABSTRACT 

The emerging H.264/AVC video coding standard provides 
significant enhancements in compression efficiency with 
respect to its ancestors in the MPEG and H.26x families. In 
this paper, we analyse the performance of two different Con-
stant Bit-Rate control methods, suitable for H.264/AVC en-
coding at SD-TV resolution, where the motion estimation is 
performed by a fast proprietary predictive algorithm. 

1. INTRODUCTION 

The H.264/AVC video coding standard [1] greatly outper-
forms its ancestors in the MPEG and H.26x families, provid-
ing about 50% more compression at equal quality [2, 3] in 
all kinds of applications, from low-bitrate streaming to high-
quality storage.  

Until now, the performance of H.264/AVC was analysed 
mostly in an ideal environment, with pure variable bitrate (at 
fixed quantization values) and using the common Full-Search 
Block-Matching (FSBM) algorithm for motion estimation. In 
practical applications, however, we need to impose some 
constraints on the encoding process, i.e. on the number of 
bits generated per time unit in case of limited bandwidth, and 
on the overall computational complexity for real-time encod-
ing. The former goal can be obtained by a rate control algo-
rithm, which adapts the quantization of the residual coding in 
order to match a target bitrate, whereas the computational 
complexity can be reduced by adopting a fast algorithm to 
perform motion estimation, which is one of the most resource 
consuming tasks in the whole encoding process. 

Indeed, the relationship between rate control and motion 
estimation is an important topic of investigation, because the 
two systems interact with each other, determining the overall 
performance of the encoder. In fact, if the motion estimation 
is not efficient, the prediction error will be greater, forcing 
the rate control to raise the quantization step, in the attempt 
to match the target bitrate. This will negatively affect both 
the achieved quality and the motion estimation of successive 
frames, as the motion search is performed referencing the 
reconstructed frames, which are less correlated to the current 
one due to the coarser quantization. 

In this paper, we consider two Constant Bit-Rate (CBR) 
control algorithms, named JVT-D030/E069 and ρ-domain, 
while using a proprietary motion estimation technique that 

greatly reduces the computation with respect to FSBM with-
out visible quality losses at SD-TV resolution. 

The JVT-D030/E069 and ρ-domain algorithms are pre-
sented in sections 2 and 3 respectively, whereas section 4 
introduces the motion estimation method. The numerical 
results are showed in section 5, followed by our conclusions 
in section 6. 

2. JVT-D030/E069 RATE CONTROL 

The JVT-D030/E069 [4, 5] is a CBR control method, devel-
oped from the widely known TM5 [6], originally conceived 
for MPEG-2 video coding. The main difference between the 
two algorithms consists in the definition of luminance mac-
roblock activity, which is the Sum of Absolute Differences 
after prediction (either Intra or Inter) for JVT-D030/E069, 
and variance for TM5.  

Given a target bitrate, the JVT algorithm determines 
the QP quantizer for each macroblock operating at three 
levels: Group-Of-Pictures (GOP), frame/field picture and 
macroblock. In comparison with the original version [4, 5], 
we changed the experimental constants, in order to opti-
mally adapt the algorithm to SD-TV video formats. 

2.1 Rate control at GOP level 

The target number of bits for each GOP is 
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where N is the number of frames in the GOP, i.e. the dis-
tance between two Intra coded pictures, and Rprev is the num-
ber of exceeding bits after the encoding of the previous 
GOP, which is initialised to zero for the first GOP of the 
sequence. 

2.2 Rate control at frame/field level 

At the beginning of each frame or field (respectively in case 
of progressive or interlaced source video), the target number 
of bits for each I, P and B picture is computed as in the fol-
lowing: 
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where R is defined in (1) and Np and Nb are the number of 
remaining P and B frames or fields in the GOP, respectively. 

After the encoding of each frame, R is updated as 
SRR −=  

where S is the number of bits used to encode the current 
frame, and Np and Nb are decremented by one if the current 
frame or field was of P- or B-type respectively. 

Xi, Xp and Xb define the content complexity of the differ-
ent picture types. They are initialised with  

Xi = ( 155 · BitRate ) / 115 
Xp = ( 100 · BitRate ) / 115 

Xb = 0.9 · Xp 
and after the encoding of each frame they are updated as  
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where QPavg is the average quantizer for the current picture. 
Finally, Kp=1.1 and Kb=1.4 define the relative complex-

ity of I pictures with respect to P and B ones. 

2.3 Rate control at macroblock level 

Before encoding each macroblock, an initial quantizer is 
chosen according to the following formula 
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where r is a constant called reaction parameter, defined as  
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dq is named delta parameter and it depends from the activ-
ity of the current macroblock in the following way 
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AvgAct is the average activity for the current picture and 
actm  the activity of the current m-th macroblock. At the be-
ginning of the sequence we set AvgActi=2000,  
AvgActp=1500 and AvgActb=800.  

We would remark that the Intra/Inter prediction could be 
performed twice for each macroblock in JVT-D030/E069. In 
a first step, we derive the activity using as temporary QP the 
one of the previously encoded macroblock. Hence, we en-
code the macroblock with the final QP computed by the rate 
control, when it differs from the temporary one. Experimen-
tally we found that every macroblock is Intra/Inter predicted 
about 1.25 times, on the average, for target bitrates in the 
ranges from 2 to 7 Mbit/s at SD-TV resolution. 

The dm parameter indicates the occupation of the virtual 
buffer for picture type n=i,p,b, and it is specified as 
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where: 
• dm

i, dm
p, and dm

b represent the fullness of virtual buffers 
at macroblock m for each picture type. The final fullness 
is used as initial value d0

i, d0
p, and d0

b for the next frame; 

• d0
n is the initial virtual buffer occupancy, respectively set 

as d0
i=20·r/31, d0

p=Kp·d0
i  and d0

b=Kb·d0
i for I, P and B 

pictures at the beginning of the encoding process; 
• Bm-1 is the number of bits generated by encoding the first 

m-1 macroblocks in the picture (composed of MB_CNT 
macroblocks in total). 

3. ρρρρ-DOMAIN RATE CONTROL 

Traditional rate control algorithms, as also the JVT-
D030/E069, operate in the so-called q-domain, where rate 
and distortion characteristic curves of the encoder are de-
termined as a function of the quantization step. However, an 
alternative is to consider them as functions of the percentage 
of null quantized transform coefficients, indicated by ρ. This 
is named ρ-domain analysis, and an efficient rate control 
method exploiting this theory was presented in [7] and prop-
erly adapted to H.264/AVC in [8].   

The number of bits R for each picture can be expressed 
as a function of ρ through the relation 

21)( λρλρ +⋅=R         (3) 
With the approximation that no bits are sent if all coeffi-
cients are null, equation (3) becomes 

)1()( ρλρ −⋅=R              (4) 
Given a target bit budget Tn for the n-th frame, the 
corresponding ρn can be determined from (4) as 
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The parameter λ can be estimated from the results of the 
encoding of previous frames, whereas the percentage of null 
coefficients ρ can be written as a function of the quantizer 
QP in the following way 

∑
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where px(q) is the probability distribution of transform coef-
ficients x and [-∆,+∆] is the quantization step interval asso-
ciated with the null reconstructed value. For the probability 
distribution, we empirically have chosen a laplacian-
impulsive function defined as 
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being δ(q) the Dirac impulse. 
Writing (6) in integral form and considering (7) we obtain 
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The coefficients α and β can be accurately approximated by 
relating them to the average activity of the picture in the 
polynomial form: 
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and then tabulated. 
As also the JVT-D030/E069 algorithm, the ρ-domain 

rate control operates at GOP, picture and macroblock levels. 
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At GOP level, the behaviour is identical to what ex-
plained in section 2.1, i.e. a certain number of bits is assigned 
as a budget to the current GOP, taking into account the ex-
ceeding bits spent for the previous one. 

At picture level, a different amount of bits Tn is assigned 
in a way similar to (2), depending on relative complexities 
defined for I, P and B images. Given the target bits, equation 
(5) is used to determinate the corresponding ρ, which is then 
substituted in (8), thus obtaining a target average quantiza-
tion step for the current frame (or field). 

At macroblock level, the quantization step is corrected 
considering that, after coding the m-th macroblock of the n-th 
frame, the percentage of null quantized coefficients in the 
previous coded m macroblocks is P

mρ  and the number of bits 

used to code the picture is P
mB . According to the given target, 

P
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R
m BTB −=  bits are left to code the remaining blocks, and 

the required percentage of null coefficients is 
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From that, it is possible to determinate the ratio k = P
m

R
m ρρ  

and to compute QPm+1, as proved in [8]. The value QPm+1 
can be clipped depending on specific thresholds and on the 
previous QPm value, to avoid different coding quality be-
tween adjacent macroblocks, which would produce un-
pleasant visual effects. 

4. FAST PREDICTIVE MOTION ESTIMATION  

The classical FSBM method exhaustively evaluates all pos-
sible motion vector candidates within a predefined search 
window area. For a practical, real-time implementation, it is 
far too complex and expensive, therefore faster methods are 
absolutely needed. The class of spatial-temporal correlation 
techniques proved its great efficiency in our previous ex-
perience with MPEG video compression [9, 10] and it can 
be considered an excellent alternative to the FSBM [11]. 

The proposed predictive-recursive algorithm is expres-
sively conceived for high-quality H.264/AVC video coding 
and operates in two steps. The first one is the identification of 
the best motion vector within a set of candidates, chosen 
among the available spatially and temporally correlated mo-
tion vectors, exploiting the results of the motion estimation 
already performed on previous macroblocks. To reduce the 
computation, only the nearest spatial and temporal vectors 
are tested, as shown in Figure 1. Once the best vector is se-
lected, a refinement step is then applied by adding fixed up-
dates in search for the optimal motion vector. These updates 
depend adaptively on the motion activity of the encoded 
video sequence. Furthermore, the total number of vectors 
actually tested is fixed and predetermined for each macrob-
lock, regardless of the search window range, which can 
therefore be set as large as the entire picture. On the other 
hand, either software or hardware implementations of FSBM 
require limiting its search area, respectively to reduce simula-
tion times or silicon area to reasonable, cost-effective levels. 

Both candidate selection steps are part of two inter-
leaved motion searches, called Coarse and Fine search. The 

former proceeds in the picture display order and its results 
are exploited by the latter, which proceeds in the usual pic-
ture coding order. In this way, the proposed algorithm is able 
to obtain the same image quality  (measured in Peak Signal 
to Noise Ratio, PSNR) of the FSBM with maximum loss in 
compression efficiency of 3% and by using only 1% of the 
computation required by FSBM for a typical search range of 
±64 pixels, at any bitrate. Table 1 concisely shows a per-
formance comparison between FSBM and our approach. 
  

 
Figure 1: spatial (S1, S2, S3) and temporal (T1, T2, T3) mo-
tion vector candidates in the Coarse search step. CMB is the 
current macroblock under estimation. 

 
Sequence 

name 
FSBM stream 

size [kB] 
Bitrate  
increase 

Y PSNR  
loss [dB] 

calendar 2 076 0.434% -0.030 
fball 3 390 2.697% -0.015 

renata 1 894 1.153% -0.018 
stefan 4 540 -2.372% -0.045 

Table 1: performance of proposed motion estimation algo-
rithm with respect to FSBM at fixed QP = 31, for well-
known SD-TV sequences. We used the same FSBM of the 
JVT reference SW encoder version 6.1e, with Hadamard 
transform, Loop Filter, CABAC, Multi-frame prediction 
with three references, no Rate-Distortion optimization. 

5. EXPERIMENTAL RESULTS 

The performance of JVT-D030/E069 and ρ-domain rate 
controls with the proposed fast motion estimation algorithm 
was evaluated by a proprietary H.264/AVC encoder, devel-
oped by the authors and compatible with the JVT reference 
software decoder version 6.1e.  

We considered many different SD-TV sequences, in both 
NTSC (720×480 pixels, 30Hz) and PAL (720×576 pixels, 
25Hz) interlaced formats, imposing target bitrates from  
2 Mbit/s to 7 Mbit/s, with a step-size of 1 Mbit/s.  The fol-
lowing parameters are common to all simulations: GOP 
length of 12 (PAL) or 15 (NTSC), 2 B pictures, Hadamard 
transform applied in motion estimation, Rate-Distortion op-
timisation and Multi-frame prediction not applied, search 
range of ±32 pixels, CABAC entropy coding. 

Figure 2, 3 and 4 show the rate-distortion curves for 
three SD-TV sequences. Both rate controllers exhibit good 
behaviour in terms of quality and accuracy (shown in Table 
2), which induce us to consider them as good references for 
evaluating other new rate control methods. The JVT 
D030/E069 is very reliable, but sometimes requires encoding 
twice the same macroblock, which makes expensive its im-
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plementation for real-time, consumer-electronics devices 
such as DVD recorders. On the other hand, the ρ-domain 
offers nearly the same accuracy of JVT-D030/E069 with re-
duced computational complexity (from 15% to 25% lower in 
our experiments) and therefore it is more suitable for real-
time application, although its dependence on pre-computed 
coefficients α and β can limit its reliability for particular 
conditions. 
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Figure 2: rate-distortion diagram for the “Stefan” sequence. 
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Figure 3: rate-distortion diagram for the “Football” se-
quence. 

6. CONCLUSIONS 

In this paper, we showed two CBR control methods, JVT-
D030/E069 and ρ-domain, applied to H.264/AVC compres-
sion at SD-TV resolution. They exhibit good performance in 
terms of rate-distortion analysis when the video encoder 
applies a novel fast motion estimation algorithm.  

Future activities concern the development of new CBR 
and VBR control algorithms, jointly to the proposed fast 
predictive motion estimation, for DVD and PVR applications 
at SD-TV and HD-TV resolution. 

 

Table 2: target bitrate accuracy error for JVT-D030/E069 
and ρ-domain algorithms, averaged on all experimented 
bitrates. 
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Figure 4: rate-distortion diagram for the “Renata” sequence. 
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