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ABSTRACT 
 OFDM systems are vulnerable to time-selective fading ef-
fect, due to the relatively long symbol duration, compared 
with single-carrier systems.  This results in non-negligible 
inter-carrier interference (ICI). This paper proposes an effec-
tive frequency-domain pilot-symbol-aided channel estima-
tion method for fast-fading channels. By first observing high 
correlation between ICIs of adjacent subcarriers, we then 
devise an inter-carrier cancellation scheme. From the ICI-
reduced signal, we are able to achieve good channel estima-
tion and equalization accuracy. Simulations show that the 
new method can effectively combat fast-fading channel 
conditions. In addition, under the condition of using less 
pilots, the proposed method still can generate better SER 
than the current method [1]. 

1. INTRODUCTION 

Orthogonal frequency division multiplexing (OFDM) is a 
promising technology for broadband transmission. It has 
been adopted in state-of-art communication standards. Under 
the condition of same data rate, the symbol of an OFDM 
system is much longer than that of a single-carrier (SC) sys-
tem. Therefore, OFDM systems are less sensitive to inter-
symbol interference (ISI) than SC systems, especially with 
the insertion of a guard interval (GI) in between two con-
secutive OFDM symbols. If GI is loaded with CP and the 
channel delay spread is shorter than the CP length, then 
multi-path channel equalization can be easily implemented 
with 1-tap division in the frequency domain. Therefore, 
OFDM system is very robust to frequency-selective fading. 

However, OFDM systems with long symbol durations 
are more vulnerable to time-selective fading than SC systems. 
This is specially the case in mobile environments and closely 
related to Doppler spread. Under this condition, the orthogo-
nality between subchannels cannot be maintained and the 
inter-carrier interference (ICI) will be introduced. ICI will 
decrease the signal to interference ratio (SIR). Low SIR will 
introduce an error floor in signal detection.  
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To mitigate the interference effect, several channel es-
timation and equalization methods have been proposed for 
time-variant channels. In [2] and [3], time-domain and fre-
quency-domain compensation techniques, respectively, are 
proposed to reduce the distortion. However, these two ap-
proaches assume flat Rayleigh fading channels. For fre-
quency-selective multipath fading channels, [4] proposes a 
frequency-domain equalization technique to reduce the Dop-
pler-induced ICI. However, this approach needs a time-
domain pilot signal inserted in data stream to get the channel 
variation information. It is also sensitive to timing error. The 
frequency-domain pilot-symbol-aided estimation method [1] 
gives a good modeling of a time-variant channel, and solves 
channel parameters effectively. However, the estimation is 
still significantly affected by ICI. Based on this approach, in 
this work we propose an ICI-reduced channel estimation 
method for fast-fading channels, by utilizing the high correla-
tion between subcarrier ICIs. Simulations show better per-
formance than the mentioned methods. 

2. ESTIMATION OF FAST-FADING CHANNELS  

2.1 OFDM system model 

The transmitted signal of an OFDM system can be expressed 
by 
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where d(k) is the transmitted data on the k-th subcarier and N 
is the total number of subcarriers. We assume the discrete 
time-variant channel impulse response is 
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where )(nlα  is the time-variant gain of the l-th path and ν  is 

the number of paths. If the length of channel impulse re-
sponse is shorter than the CP, the received time-domain sig-
nal is 
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where  is the additive white Gaussian noise and H(n,k) is 

the time-variant channel frequency response: 
)(~ nn
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Figure 1. ICI gain function L(k) 
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Then DFT of the received signal r(n) is 
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By this equation, it is obvious that the received signal on the 
m-th subcarrier not only consists of the desired d(m), but all 
the d(k)’s from other subcarriers. The inter-carrier component 
in the received signal is 
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If the channel is fixed over an OFDM symbol, then (5) re-
duces to  
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It is verified in [4] and [6] that if  is less than 0.1, the 

channel variation over an OFDM symbol can be assumed 
linear, where  is the Doppler frequency and T is the 

OFDM symbol duration. Here, we only consider this relaxed 
case, because it represents common fading situations. For 
faster fading conditions, the following demonstration also 
applies, assuming higher-order non-linear model. With this 
assumption, the time-variant channel impulse response (2) 
can be rewritten as 
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and equation (5) can be rewritten as 
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Figure 2. Comparison between ICI gains of adjacent subcarriers 

where  and  are the variation slope and initial value of the 

path gain, respectively, and L(k) is 
ls la
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2.2 Stamoulis’ method [1] for channel estimation 

Stamoulis’ approach is an efficient channel estimation 
method [1] for fast-fading channels as detailed below. We 
will later modify and improve its performance. First, we as-
sume that there are P pilot data placed on the subcarriers with 
indices p(q) (q = 0,1,…,P-1), then 
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Since the transmitted data except pilots are unknown to the 
receiver, ICI contributed by non-pilot subcarriers can be col-
lectively treated as a single error term. Therefore, (11) can be 
rewritten as 
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There are ν2  unknown parameters (if neglecting the error 
term), in the equation. Therefore, if ν2≥P , then these pa-
rameters can be solved by the following linear system.  
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Figure 3. ICI distribution after taking difference between adjacent 

subcarriers 
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Thus, the least-square (LS) estimate of the channel parame-
ters can be obtained by 
 pYWSA

1−
=  (14) 

where 
1−

W  is the pseudo inverse of W . We can rewrite (5) 
in a matrix form as 

 NDHY +=  (15) 
With the solved parameters, we can use (4), (5) and (8) to 
determine H . Then the transmitted data can be solved by the 
LS estimate: 

 YHD
1−

=  (16) 
In (12), the ICI from non-pilot subcarriers is treated as 

noise. To reduce the noise, pilot placement is very critical to 
accurate channel estimation. If the channel variation is not 
too fast, the ICI of a subcarrier mostly comes from its adja-
cent subcarriers. Therefore, to reduce the error term, pilots 
should be placed on subcarriers close to each other. However 
for time-invariant frequency-selective fading channels, [5] 
shows that pilot tones should be equispaced and evenly 
spread to all subcarriers to get the best performance. Under 
these two considerations, [1] suggests that pilot tones be bet-
ter split into equispaced groups of subcarriers.  

3. THE PROPOSED ESTIMATION SCHEME 

Since the term Er(q)  of (12) due to non-pilot subcarriers 

contributes to noise and ICI, it should be minimized as possi-
bly as it can be. Here, by utilizing strong correlation between 
adjacent ICI subcarriers, we propose an ICI cancellation 
scheme to reduce the error, for a better channel estimation. 

First, from (9), we can find that the ICI components con-
tributed by different subcarriers are mainly determined by the 
function L(k). Figure 1 shows L(k) magnitude, assuming N = 
64. It reveals that the power of ICI mostly comes from adja-
cent subcarriers and ICIs contributed by faraway subcarriers 
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Figure 4. SER performances of Stamoulis’s method and the pro-

posed method, ν4  pilots, (solid:  dashed:04.0=Tfd 06.0=Tf d
) 

are almost the same. Based on this observation, we can per-
form ICI cancellation using adjacent ICI components as dis-
cussed below. Let’s first rewrite the ICI component of a sub-
carrier (6) as 
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In (17), ICI(m1) will be very close to ICI(m2), if L(m1-k) is 
close to L(m2-k). This is particularly the case when m1 and 
m2 are close to each other, as depicted in Fig. 2, assuming 
m1=0 and m2=1. This figure shows that L(-k) and L(1-k) are  
almost the same for 614 ≤≤ k . This implies that for adjacent 
subcarriers, ICIs contributed by distant subcarriers are almost 
identical. Under this condition, we can take the difference 
between the adjacent subcarriers of the received signals, i.e., 
Y(m)-Y(m+1), as described by (18), which leads to L(m-k)-
L(m+1-k) for the ICI term. As a result, the ICI will be signifi-
cantly reduced, except those ICI from the subcarriers close to 
the m-th subcarrier. 
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Fig. 3 shows the ICI gain distribution after the differential 
operation of L(-k)-L(1-k). Since Y(m)-Y(m+1) can be ex-
pressed as a linear function of parameters  and , we 

can solve these parameters using (18) instead of (13).  
sal ' ssl '

We can fully utilize the correlation between all subcarri-
ers and further reduce the ICI term by linearly combining 
more than two pilot tones as 
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(19) forms a new linear system as shown below: 
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Figure 5. SER performances of Stamoulis’s method and the pro-

posed method, ν3  pilots,  04.0=Tfd
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  (20) 
If  is properly chosen, then the ICI can be significantly 

reduced. Therefore, one can estimate the channel parameters 
more accurately than from (18). However, the self-ICI can-
cellation operations also alter the error term Er(q).  Hence, 
the optimization of  should make the influence of error  

sqg ,

sqg ,

term Er’(q) as small as possible. Since the ICI correlation 
between pilot tones from different pilot groups is small, the 
combination set can be narrowed down to the group of pilots 
close to the object pilot subcarrier. As a result, we can define 
the following optimization cost function:  
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This cost function can be optimized by existing numerical 
methods. In order to get a better result, the optimization can 
assume a different set of  for each pilot subcarrier 

group. Note that values of  also affect the second term 

in (19). In the worst case, this may lead to a very small 
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 term. As such, estimation of  

would be noisy. To compensate this effect, one can devise 
particular d(m)’s for pilot subcarriers, so as to produce sig-

nificant coefficients 
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simpler than re-optimization of . Here we find appro-

priate pilot data d(m)’s by exhaustive search.  
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4. SIMULATIONS AND COMPARISON 

In the simulations, we assume 16QAM d(m), N = 64, the 
total bandwidth is 500KHz, the sampling period sTc µ2= , 

the length of cyclic prefix , and the number of delay 

paths 
cg TT 4=

4=ν . It is also assumed that the path gains follow the 
exponential-decay power profile, and the last path power is 
20dB below the first path. 

As for the pilot placement, similar to [1], we assume total 
ν4  pilot subcarriers with ν  groups, which are equispaced in 

the DFT grid (i.e., the subcarriers with indices {0, 1, 2, 3}, 
{16, 17, 18, 19}, {32, 33, 34, 35}, and {48, 49, 50, 51} are 
pilot tones in groups). To evaluate the performance, we as-
sume three different conditions of , 02.0=Tfd 04.0=Tfd

 

and 06.0=Tfd
. For the case of , SER perform-

ance of our method is almost the same as that of [1], because 
the ICI effect is very slight in this case. However, for faster 
time-variant channel conditions of 04.0=Tfd

02.0=Tfd

 or 06.0=Tfd
, 

 has better performance, especially at high SNR, 
as shown in Figure 4. In the figure, result due to conventional 
LMMSE channel equalizer (1-tap) is also included for com-
parison. Obviously, the conventional equalizer has an error 
floor due to the ICI noise. Figure 5 shows that the perform-
ance comparison for the case of 

our method

ν3  pilots. n this case, the 
proposed method has a more significant improvement over 
the Stamoulis’ method, than the condition of  pilots. 

I

CONCLUSION 

This work proposes g channel estima-
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