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ABSTRACT

This paper presents a new fast algorithm for generating
sparse signal approximations within an overcomplete sub-
band representation. While the current paper concentrates on
sparsifying the Modulated Complex Lapped Transform the
theory is applicable to representations composed of a gen-
eral union of orthonormal bases. We illustrate our method
on an audio signal and demonstrate the coding gain of such
representations.

1. INTRODUCTION

Sparse signal representations have become increasingly pop-
ular in a number of fields such as: signal processing [1, 9, 16,
11, 3], Independent Component Analysis (ICA) [19, 12, 4]
and Machine Learning [18, 7]. Typically the aim is to ex-
ploit the redundancy in an overcomplete dictionary to obtain
a compact representation of the signal. Furthermore sparse
decompositions are by their very nature generative, concen-
trating on reconstruction equations. This differs markedly
from Frame theory [13], which concentrates on the analysis
equations.

A number of criteria for sparsity have been proposed and
a variety of algorithms for solving the resulting optimization
problem have been developed. In [3] we applied an Itera-
tive Re-weighted Least Squares (IRLS) based algorithm to
sparsify the Modulated Complex Lapped Transform (MCLT)
which is a 2x overcomplete subband decomposition com-
posed of the union of 2 orthonormal bases introduced by
Malvar [14]. The algorithm in [3] is equivalent to the reg-
ularized FOCUSS algorithm [16] and the sparse regression
algorithm of Figueiredo [7].

In this paper we present a new sparsifying algorithm
that avoids the expensive matrix inversion that dominates
the computational cost of most previous sparsifying meth-
ods (e.g. [1, 16, 3]). This is replaced by a sequence of
scalar Shrinkage operations. The algorithm generalizes the
IRLS framework and can be interpreted as a generalized
Expectation-Maximization (EM) algorithm. We also note
that the framework is applicable to a wide class of overcom-
plete dictionaries beyond the MCLT.

The rest of this paper is set out as follows. In the next
section we discuss the concept of sparsity and identify possi-
ble iterative solutions. We then introduce our sparse subband
decomposition, based on the MCLT. Using the fact that the
MCLT is the union of two orthonormal bases, we construct
our new algorithm which we have coined Fast Iteratively Re-
weighted SParsifier (FIRSP). This is followed by a simple
audio example where we also examine the coding gain ob-
tainable from the sparse representation. We end with a dis-
cussion on generalizations and applications.
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2. SPARSE DECOMPOSITIONS AND
APPROXIMATIONS

Let @ € CV*M define an overcomplete basis (M > N). Our
aim is to determine an approximate overcomplete representa-
tion ®s = x + e of a signal x such that the coefficients, s, are
sparse and approximation error, e, is small. Note that even
when the approximation error is constrained to zero, over-
completeness provides us with the flexibility to search for a
sparse representation [1].

Unfortunately there are currently a plethora of sparsity
measures with little indication of their relative merits. How-
ever an interesting class of such measures has been examined
in the FOCUSS family of algorithms [16]. These aim to min-
imise the following cost functions:

1 M
s=argmin —||x— ®s|[Z+A S |s]? (D)
s 2v =1

where 0 < p < 1, v is the variance of e and A is a scaling
parameter for the sparsity measure. This optimization prob-
lem also has various probabilistic interpretations [5, 16, 7, 8].
More generally it can be shown, [16] that if p < 1 then a min-
imum of the cost function is sparse, by which we mean it has
no more than N non-zero coefficients. In practice we are
looking for approximations that have K < N non-zero coef-
ficients. The value of p can be interpreted as controlling the
degree of sparsity of the prior placed on s,. p =1 is equiv-
alent to a Laplacian prior on s,,. At the other extreme p — 0
equation 1 becomes:

1 1Y
s:argmsinZHx—quH%—i—EkZl In|s| 2)

This cost function corresponds to placing a Jeffrey’s prior on
the variance in a Hierarchical Gaussian model [7]

We also note that the Laplacian prior (p = 1) is unique in
that this is the only prior model that both guarantees sparse-
ness of the solution while also guaranteeing that the cost
function is convex and therefore has a unique minimum [1].
Indeed a reasonable criticism of using p < 1 is that the cost
function typically has many minima (see [9]).

There has also been some interesting research showing
that under certain circumstances the minimum /; and /y so-
lutions are actually equivalent [6]. Unfortunately this only
holds when there is no approximation error (as is easily seen
from the difference in the hard and soft thresholding solu-
tions that emerge when the dictionary is orthonormal). While

lalthough this is the cost function for p — 0 it does not correspond to an
Ip cost function. However, in practice, it appears to be a good approximation
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the algorithms presented below can equally be applied with
p = 1 we have so far found that the benefits of a guaranteed
single minimum do not compensate the mildness of the spar-
sity model. For this reason we concentrate on the strongest
sparsity model, using equation (2).

3. SPARSE IRLS SOLUTIONS

We next review the IRLS solution that we used in [3] since
this provides the starting point for our new algorithm. Let
W € RM*M be a non-negative diagonal weighting matrix.
A Weighted Least Squares estimate for s can be obtained
through matrix inversion as follows:

s = (vW—|—CDHCD)71CDHx (3)

This solves the following problem:
— argmin 0~ || s —x[|3 + Lo 4
§ = argmin 7 s — Xx||3 2s s @)

We can now use this to solve equation (1) by iteratively
adapting the weighting matrix as a function of the previous
estimate for s. To minimize equation (2), at the ith iteration,
we choose the weighting matrix to be:

w0 (n,n) = |si V|72 (5)

This approach can also be viewed as an EM algorithm when
applied to hierarchical Gaussian models [5] and is the ap-
proach used by Figueiredo [7] for sparse regression. The
Weighted Least Squares solution forms the maximization
step, while the re-weighting is equivalent to the Expectation
step. (the EM framework also provides a simple means of
optimizing v - see [3]).

Finally since the IRLS can be formulated as an EM algo-
rithm we know that it will exhibit the usual monotonic con-
vergence property of EM [5].

4. SPARSE MCLT SUBBAND DECOMPOSITIONS

We now consider the specific case where ® is the Mod-
ulated Complex Lapped Transform (MCLT) introduced by
Malvar, [14], which is a simple 2% overcomplete subband
decomposition. The MCLT is very similar to the Short Time
Fourier Transform [13] and is also the union of 2 orthonor-
mal transforms since the real component of the coefficients
is the Modified Cosine Transform (MDCT), while the imag-
inary part is the Modified Discrete Sine Transform (MDST).

Sparsifying the MCLT was initially examined by the au-
thors in [3] using the fact that the operator ®® is block
tridiagonal. Here we will instead make use of the special
orthonormal structure within the MCLT.

A further important aspect of the MCLT is that its redun-
dancy makes it approximately shift invariant, a similar con-
cept to shiftability proposed by Simoncelli [17]. By using
a 2x overcomplete complex filterbank (e.g. [10, 14]) each
complex subband is approximately alias free and hence ap-
proximately shiftable [17].

In generating sparse subband decompositions we should
try to preserve this property. This can be done by imposing
priors on the coefficients that are phase-invariant. That is, in
our sparsity model we impose sparsity on |s,| rather than on
the real and imaginary components of s, individually (see[3]

for more details). This means that we have N weights to cal-
culate rather than 2N which is important when we measure
the coding cost of the decomposition in section 6.1.

5. FAST ITERATIVELY RE-WEIGHTED
SPARSIFIER

When adopting the IRLS approach to sparsification each up-
date requires the inversion of the M x M matrix (W + ®" ®).
Similar matrix inversion is necessary in Linear Programming
solutions [1]. Efficiency depends crucially on how easily
we can perform this step. For example we can try to ex-
ploit fast transform properties to help this calculation. Here
we present a new algorithm called the Fast Iteratively Re-
weighted SParsifier (FIRSP), which also exploits the trans-
form properties, however, we also crucially do not attempt
to fully solve the Weighted Least Squares problem. Instead
of using EM to solve equation (2) let us consider generaliza-
tions of EM that might take on a simpler algorithmic form.
Specifically we know from EM theory that the maximization
step can be replaced by any operation that guarantees to in-
crease the likelihood (decrease the cost function). One such
generalization is the Expectation Conditional Maximization
(ECM) algorithm [15]. This replaces the Maximization step
by a sequence of Conditional Maximization steps. The na-
ture of EM means that there is a great deal of flexibility in
the ordering of the various CM steps and the corresponding
E step as discussed below.

We can now formally describe the iteration of our new
algorithm. Let our overcomplete basis be divided into two
orthonormal bases: ® = (P., P;) with associated real coef-
ficients ¢ and s. For the MCLT these correspond to the in-
verse MDCT and inverse MDST transforms. We can now
solve a Weighted Conditional Least Squares problem where
we freeze the values of s and optimize for c:

c= (W +07D,) " O (x— Dys) (6)

Since @, is orthonormal ®! ®,. = I and therefore the matrix
inversion reduces to a diagonal shrinkage operator [13]:

1

T
W ((Dc (x— CDsS))n (7

Cp =

An identical expression can be calculated for the Conditional
Maximization of s.

The iteration is finally completed by calculating the new
weights:

Winny = (Isul* + leal*) ™! (8)

W takes this particular form since we want the sparsity model
to act on the complex pairs ¢, + js,, i.e. be phase-invariant.
Note that in practice it is more convenient to work with 7!,

In the implementation below the re-weighting step is per-
formed after each CM. One full iteration is therefore consid-
ered to be composed of two CM steps and two re-weighting
steps. Examining this iteration we see that the computational
cost is dominated by the need to map from one transform
domain to another. The cost of the shrinkage and weight
calculations are trivial by comparison. Overall one itera-
tion takes approximately 4x the computation for a single
MDCT, which itself is implemented through fast FFT-based
algorithms.
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Despite the fact that we are no longer solving the full
Weighted Least Squares, the convergence of the algorithm
does not appear to have been drastically altered (see below).
Similar observations for the ECM algorithm have been made
in other applications [15].

5.1 Comment

There is considerable flexibility in the order in which we ap-
ply the various CM and E steps. For example we could trans-
form into, say, the MDCT domain and repeatedly apply a
CM-step followed by the E-step until convergence, then we
could transform into the MDST domain and repeat the pro-
cedure, etc. A possible motivation for this is that the asymp-
totic mapping due to repeated CM followed by re-weighting
can be calculated analytically and takes the form of a sin-
gle diagonal nonlinear shrinkage operator. In this particular
application we have not found this to give us significant im-
provements, however it might prove beneficial for unions of
different orthonormal bases.

6. AUDIO EXAMPLE

To illustrate the performance of our method we apply the iter-
ative shrinkage algorithm to a short extract (scaled between
—1 and +1) from a guitar solo. The audio was sampled at
44.1kHz and we used an MCLT with a frame size of 1024.
Figure 1 shows the MCLT ”’spectrogram” for the audio sig-
nal. The signal was then sparsified using a fixed v=107>. 10
iterates of the FIRSP algorithm were computed. In contrast
to the initial redundant basis only 6% of the complex coef-
ficients remained non-zero and the resulting approximation
had a SNR of: 38dB. The generative MCLT ”spectrogram”
for the sparse coefficients is shown in figure 2.
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Figure 1: MCLT “spectrogram” of the guitar data.

The evolution of the algorithm is best seen by plotting the
size of the coefficients sorted in order of magnitude for each
iterate. This is shown in figure 3 (solid lines) along with the
magnitude of the MDCT coefficients (dashed). From this it
can be seen that most of the coefficients shrink to zero after a
few iterates. Indeed the number of iterations required is very
similar to the full IRLS scheme investigated in [3], while the
computational cost of each iterate is a small fraction of that
for the IRLS scheme.
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Figure 2: sparse MCLT representation of the guitar data.

Figure 3: A sorted plot of MCLT coefficient amplitude for
the FIRSP algorithm (solid lines - iterations increasing from
right to left) and MDCT coefficient amplitude (dashed).

6.1 Coding cost for overcomplete representations

For a sparsely coded signal, increasing sparsity typically re-
sults in more efficient coding since the dominant coding cost
is due to the significance map, [13]. For this reason a sim-
ple measure of the coding rate, R, (in bits per sample) for a
quantization of K bits per significant coefficient is as follows:

R = (ps)+2pK )

where pjy is the probability that a coefficient will be signifi-
cant. The first term, 7 (ps) measures the cost of the signif-
icance map, while the second term measures the cost of en-
coding the significant bits (with no additional compression).
Note that in our complex transform, the number of coeffi-
cients is the same as the number of samples. Thus, while we
need 2 x the number of bits in order to encode the significant
complex coefficients we do not need to account for twice the
entropy of the significance map (as we would have to if we
had treated the cosine and sine coefficients independently).
We applied this measure of coding cost to our sparse
subband architecture for the audio sample examined above.
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Again the frame size was 1024 and 30 iterations of the FIRSP
operator were applied. Figure 4 shows the rate-distortion
plots for the sparse coefficients with different levels of ap-
proximation (i.e. different values of v) and differing levels of
quantization (2 < K < 14)). From the plot it is clear that the
best values of v and K are linked. The figure also shows the
coding cost for the quantization of the MDCT coefficients,
using the same formula. When the noise level and quanti-
zation resolution are well matched the sparse subband repre-
sentation can be seen to provide a coding gain over the basic
MDCT transform.
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Figure 4: A plot of Signal-to-Noise Ratio against the cod-

ing rate for: v=1073,10"% and 107> and different levels of
quantization (dashed); and for MDCT coefficients (solid).

7. DISCUSSION

In this paper we have presented a scheme for generating
sparse subband decompositions based on the MCLT. To our
knowledge this is the first sparsifying algorithm that can
be practically applied to large datasets, requiring as few as
10 iterates, each roughly equivalent to 4 MDCT calcula-
tions. This is orders of magnitude fast than previous Ba-
sis/Matching Pursuits, [1, 13, 3]. As such, we believe that
this algorithm is destined to have a large impact on a wide
range of coding and signal processing problems. For ex-
ample we believe that it could prove a strong competitor
to Matching Pursuit as the basis for new scalable and low
bit rate coding schemes. Furthermore sparse representations
also have excellent statistical properties, providing better per-
formance for de-noising and source separation ([13, 19, 4]).

While we have concentrated on the MCLT for our over-
complete dictionary here, the theory is applicable to gen-
eral unions of orthonormal bases such as: combinations of
the MDCT and wavelet bases [2]; or Kingsbury’s Dual Tree
Complex Wavelet Transform [10]. There is also potential to
extend the framework in other directions by exploiting the hi-
erarchical nature of our model and introducing further struc-
ture e.g. persistence or harmonic dependencies.
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