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ABSTRACT

In this contribution we present a novel phase estimator that can be
employed for both square and cross QAM constellations. It is based
on the estimation of the orientation of the concentration ellipses of
the bivariate Gaussian distribution having the same second order
moments of the two random variables obtained considering the real
and the imaginary part of the fourth power of the received data. It
does not require knowledge of the transmitted symbol constellation
and does not need gain control. Experimental results outline the
good performance of the here described estimator, superior to that
of well known phase estimation methods.

1. INTRODUCTION

In synchronous systems using high-speed signaling such as QAM
modulation, phase recovery is a problem of paramount importance.
For efficiency reasons the phase estimation must be performed in
a blind manner, that is without using training sequences of known
transmitted symbols.

In the recent literature several approaches for blind phase es-
timation have been proposed. In [1] the blind phase recovery
problem has been dealt with using higher order statistics after a
gain control stage. In [2] Cartwright presents a modification of
the method described in [1], and obtains an estimator based on a
set of fourth-order statistics, without needing any gain control. It
has been shown in [3] that the estimator in [2] is equivalent to
the fourth-power estimator presented in [4], which in turns was
demonstrated to approximate the maximum-likelihood estimator in
the limit of small signal-to-noise ratio (SNR). In [5] an estimator
based on eighth-order statistics gives improved performance for
cross QAM systems over the fourth power phase estimator [2].
Moreover, less observed samples are needed. A phase estimator
based on a modification of the received constellation is presented
in [6]. In [7] a nonlinear filtering is performed in order to retain
only constellation points more “reliable” for the phase estimation.

In this paper a new blind phase estimator that does not require
any gain control is presented. It is based on the evaluation of the
fourth power of the received data and subsequent estimation of the
orientation of the concentration ellipses of the bivariate Gaussian
distribution having the same second order moments of the two
random variables obtained considering the real and the imaginary
part of the fourth power the received data.

2. PROBLEM STATEMENT

The problem of phase estimation in baseband QAM systems is here
addressed. Let us indicate with

the received data sample, of size N, where X [n] is the complex
transmitted symbol, and 6 is the unknown carrier offset that has
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to be estimated. It is further assumed that W [n| is a realization
of circularly distributed complex noise, statistically independent of

X[n].

3. ESTIMATION OF THE PHASE ROTATION

The first step toward the estimation of the unknown phase 6 con-
sists in evaluating the fourth-power of the received data YV =

yr + jyi, which gives Y4 = R+ jI, being

R =y, —6yry} +yi )
I =4(y2y; — yryy)- 3)

By performing the fourth-power, the constellation points having
phase ¢y = /44 km/2 (with k =0,1,2,3) are mapped into the
single point having phase 4¢; = m, while the constellation points
having phase ¢, = 7 /4+kn/2+~ (with k=0, 1,2,3) are mapped
into points having phase 4¢y = m+ 4+ dependent of the angular
offset . In Figs.1 and 2, the fourth-power of the constellation
points for both the 16-QAM and 32-QAM constellations are dis-
played respectively.

The bidimensional random variable (R, I) is described at sec-
ond order by the following five moments:

mr € E{R} ; m; € E{I}

@ () D R} m® ()

Let us consider the bivariate Gaussian probability density function
(pdf) having the same second order moments; the loci of points at
equal pdf are the so-called concentration ellipses.
In Figs. 1 and 2 the constellations points of the bidimensional
variable (R, I) are plotted for the 16-QAM and the 32-QAM con-
stellations, respectively, for 6 = 0.

In these figures we have also reported the concentration ellipse
described by the equation

1 (R—mp)® (R—mp)(I —my)
P 2 _2pR,I
1_pR,I oh OROT
_ 2
e T;I) ) _1
oT

where pg 1 is the correlation coefficient of the random variables
R, 1, with variance U%{ and 0‘%, respectively.

The effect of 6 # 0 is a simple counter-clockwise rotation by
0/4 of all the figures. Hence, the phase estimation can be per-
formed by calculating the orientation of the principal axes of the
concentration ellipses above defined. For cross constellations, a
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Figure 1: Fourth-power of the 16-QAM constellation and corre-
sponding concentration ellipse.
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Figure 2: Fourth-power of the 32-QAM constellation and corre-
sponding concentration ellipse.

/2 correction must be taken into account, since for these constel-
lations the phase rotation 6/4 is measured by the minor principal
axis.

The orientation of the principal axis of the concentration el-
lipses with respect to the horizontal axis is measured by the angle
a given by

(1,1)
2(m —mpRpm
tan(2a) = (M Rm)

“4)

mig) = (mp)? = mi? + (my)?

Since we measure tan(2«), computation of 6 from « is affected by

a /4 ambiguity, while the 7 /2 rotational symmetry of the symbol
constellation induces only an unavoidable 7/2 ambiguity.

In order to obtain a correct 7m/2 ambiguity we resort, for ex-
ample, to the additional information provided by

v =arctan [ —
mp

that basically constitutes the fourth-order estimator as shown in
[3]. Actually, the angle « is needed only to determine in which
of the four quadrants of the Cartesian plane lies the center of the
concentration ellipse so to suitably correct by a £ /4 rotation the
value of 6 as illustrated in the following. Obviously, v can be
substituted by any parameter able to locate the quadrant where the
center of the concentration ellipse lies.
Hence, from the angle

Bs = %arctan (tan(Za))

the phase ambiguity can be eliminated as follows:

% T
—gn<y<E — 0= (Bs+m)/4

thus obtaining the value 6 € (—m/4,7/4) now within the above
said unavoidable 7 /2 ambiguity due to the /2 rotational symmetry
of the symbol constellation.

For cross constellations, e.g. 32-QAM, in lieu of G it can be
used the angle

ﬁc - ﬂs + 71'/2
evaluated modulo 7 such that B¢ € (—m/2,7/2).

4. PHASE ESTIMATION FROM FINITE SIZE SAMPLE

When an observed sample of finite size IV is observed, moments
have to be estimated by sample averaging, that is, after defining

AV} & SN/

g € AVIRR)Y ;i AV{IR]}
mg) df Ay {R2 [n}} ; rhgz) def Ay {12 [n}}
G < Av{Rln] - I[n]}

and the estimated rotation & can be obtained from

(11 .
2(m§%71) —Thgpmy)

tan (2&) = 6]

iy = (mg)? — i + ()2

It is worth noting that even when the additive noise is absent,
the finite sample size will affect the estimation of moments and
the subsequent phase estimation, since the constellation points de-
picted in Figs.1 and 2 will not be equally populated, and this in
turn determines a deformation of the concentration ellipse. This
latter modifies its eccentricity as well as its orientation, due to the
stretching and to the rotation towards the more populated points.
This explains the so-called “constellation self-noise” firstly illus-
trated in [4].

Observe that, since the constellation points located at phases
o = w/4+ km/2 (with k = 0,1,2,3) are mapped into the sin-
gle point with phase 4¢; = 7 after raising to the fourth power,

914



they do not contribute to said constellation self-noise. A constel-
lation having only such points will result free from self-noise, e.g.
the 4-QAM constellation. On the other hand, self-noise of cross
constellations increases since these latter lack some corner points;
consequently, performance of phase estimation is expected to de-
teriorate.

Moreover, improved phase estimation is expected by retain-
ing only the “good” constellations points located at phases ¢y =
w/4+kw /2 (with k =0,1,2,3), and rejecting the other “bad” con-
stellation points. Note that this requires gain control and knowledge
of the constellation at the receiver. The behavior of the optimum
nonlinearity obtained in [8] is thus explained as above discussed.
Phase estimation using a strategy of points selection at the receiver
will be addressed elsewhere.

5. EXPERIMENTAL RESULTS

In this Section, the performance of the here presented estimator,
in terms of standard deviation, are discussed for both square and
cross QAM constellations. A comparison with the performance of
the fourth order Cartwright estimator [2] and with the one of the
eighth order Cartwright estimator [5] is conducted for both square
QAM constellations and cross QAM constellations, respectively.
Specifically, the experimental standard deviation is obtained by
performing a number of 500 MonteCarlo trials; the phase is main-
tained 6 =7 /16 for all the experiments and the additive noise is
complex Gaussian distributed.

Moreover, in the same figures we have also reported the vari-
ance of our estimator obtained after a theoretical analysis; due to
lack of space, analytical details will be reported elsewhere.

In Figs.3, 4, 5, and 6 the standard deviation of the estimates
versus the observed sample size IV is considered for the Concen-
tration Ellipse Estimator (CEO) and for the Cartwright estimators
[2] and [5] in high and low SNR per bit. From Figs.3 and 4 it
is evident that our CEO estimator has better performance than the
estimator presented by Cartwright in [2]. Specifically, with regard
to the 16-QAM constellation our method offers a performance gain
of about 3dB at high SNR values, whereas at lower SNRs, the gain
decrease to 1dB. In the case of 64-QAM constellation the perfor-
mance gain is about 2dB, independently of both the SNR level and
of the sample size.

In Figs. 5 and 6 the performance of our CEO estimator for
cross constellations (32-QAM, 128-QAM) are reported.

It is worth noting that our CEO estimator performs quite sim-
ilarly to the eighth-order estimator by Cartwright [5].

Therefore, it is evident that, in order to obtain an optimal per-
formance, the Cartwright estimators need to know the constellation
in use, whereas our CEO estimator performs even better without
the need to know the constellation employed. In Figs. 7 and 8 the
standard deviation of our CEO estimator vs. the phase 6 has been
considered for various sample size N. It is worth noting that the
standard deviation remains constant with respect to 6, as predicted
from the theoretical analysis.

As far as the bias of the CEO estimator is concerned, it is
ideally zero, as confirmed by numerical results shown in Fig. 9.

6. CONCLUSION

In this paper we have presented a new phase estimator that is based
on the estimation of the orientation of the concentration ellipses as-
sociated to the probability distribution of the fourth-order power of
the received data. The estimator does not need any gain control,
and simulations show that it either performs better than existing
phase estimators for square constellations, or has the same per-
formance for cross constellations. Thus, it presents the advantage
that the constellation type does not need to be known, whereas the
other estimators do need it. Simulations also confirm a theoretical
performance analysis whose details are not reported here.

Finally, we have given an interpretation of the so-called con-
stellation self-noise considering the finite sample size effects on the
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Figure 3: 16-QAM constellation: standard deviation of the CEO
estimator (circles) and the fourth order Cartwright estimator [2]
(triangles) vs. the observed sample size N in high SNR (15dB})
and low SNR (10dBy,). Straight lines are obtained from theoretical
analysis.
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Figure 4: 64-QAM constellation: standard deviation of the CEO
estimator (circles) and the fourth order Cartwright estimator [2]
(triangles) vs. the observed sample size N in high SNR (20dB},)
and low SNR (15dBy,). Straight lines are obtained from theoretical
analysis.

estimation of moments of random variables belonging to a discrete
distribution. This analysis explains why cross constellations have
increased self-noise with respect to square constellations. More-
over, stemming from this interpretation, new phase estimators can
be developed using a suitable selection of received data. The se-
lection can be operated only if the constellation is known to the
receiver and gain control have been already performed as will be
discussed in forthcoming works. Furthermore, some analytical con-
clusion found in [8] are now well understood.
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Figure 8: 32-QAM constellation: standard deviation of the CEO
estimator (circles) and the eighth order Cartwright estimator [5]
(triangles) vs. the phase 0 for various sample sizes N. Straight
lines are obtained from theoretical analysis.

02 T T
| | 32-QAM Constellation
} } SNR = 17 dB,
‘ ‘ 500 MonteCarlo runs
[ T e T
\ \ \
| . | \
. a
- \ | . \
3 8 \ - | \ a
20 \ \ : !
22 \ \ \
\ \ o \
\ 4 | ° \
-01 ® CEO (N=512) [ e de—
s Cartwrigth IV (N=512) | ‘
o CEO (N=1024) \ \
& Cartwrigth IV (N=1024) \ \
0.2 ‘ ‘
—m/2 —m/4 0 /4 0 /2

Figure 9: 32-QAM constellation: bias of the CEO estimator (cir-
cles) and the eighth order Cartwright estimator [5] (triangles) vs.
the phase 0 for various sample sizes N.
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