
Finite Set DSP, with Applications to DNA

Sequences

Ronald K. Pearson, Gregory E. Gonye

Department of Pathology, Anatomy,

and Cell Biology

Thomas Jefferson University

1020 Locust St., Philadelphia, PA, USA

{pearson,ggonye}@mail.dbi.tju.edu

and

Moncef Gabbouj

Institute of Signal Processing

Tampere University of Technology

Tampere, Finland

moncef.gabbouj@tut.fi

Abstract

Regular substructures in DNA sequences are impor-
tant in a number of biological problems including pro-
moter analysis, the detection of recurring anomalies
in tumor cells, and the study of certain genetic dis-
eases like fragile-X mental retardation. This paper
considers signal processing problems relevant to the
analysis of regular or semi-regular structure in DNA
sequences that must address the fundamental issue
of working with unordered, finite value sets.

1 Introduction

Motivated in part by an interest in the analysis of
promoter regions in DNA sequences, this paper con-
siders a number of signal processing issues that arise
when dealing with sequences that take values in a fi-
nite set Σ. Since nonparametric spectrum estimation
is an extremely useful tool for the exploratory anal-
ysis of real-valued data sequences, the primary focus
of this paper is on some extensions of classical spec-
trum estimation procedures to Σ-valued sequences.
One approach would be to simply label the categories
with real index values, effectively converting these
sequences into real-valued sequences, permitting the
use of well-developed standard methods. It is known,

however, that the results obtained in this way gener-
ally exhibit an undesirable dependence on the details
of the labelling considered (Bloch and Arce, 2002;
Buchner and Janjarasjitt, 2003; Johnson and Wang,
1999), in part because any mapping from Σ into the
real numbers induces an ordering on the elements of
Σ, which may be highly unnatural. To avoid order-
induced artifacts, here we adopt the nominal vari-

able model from cluster analysis (Gordon, 1999, p.
18) that imposes no additional structure on the set
Σ. As a consequence, it is not possible to define lin-
ear operations on Σ, so Σ-valued signal processing is
inherently nonlinear.

2 BT spectrum estimation

For a stationary sequence {xk} of real-valued ran-
dom variables, the power spectral density Sxx(f) is
defined as the discrete Fourier transform of the auto-
correlation function:

Sxx(f) =

∞∑

k=−∞

Rxx(k)e−i2πkfT . (1)

In this definition, it is assumed that {xk} is a uni-
formly sampled time-series with intersample spacing
T , and Rxx(k) is the autocorrelation function:

Rxx(k) = E{(xj − E{xj})(xj+|k| − E{xj})}

= ρ(xj , xj+|k|)σ
2, (2)

where ρ(xj , xj+k) denotes the correlation coefficient
between xj and xj+k and σ2 is the variance of the
sequence {xk}. One way of converting this defini-
tion into a computational procedure is to consider
the Blackman-Tukey estimator (Kay, 1988, p. 77):

Ŝxx(f) =

M∑

k=−M

wkR̂xx(k)e−i2πkfT , (3)

where the real numbers {wk} define a lag window, in-
cluded to manage the bias-variance tradeoff inherent
in spectrum estimation (Kay, 1988; Priestley, 1981).

To adapt this formulation to Σ-valued sequences,
it is only necessary to specify a useful autocorrela-
tion estimator R̂xx(k). In cluster analysis, the cor-
relation coefficient ρ between two real-valued data
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vectors provides the basis for a useful dissimilarity

measure between vectors (Kaufman and Rousseeuw,
1990, p. 19):

dxy =
1 − ρxy

2
. (4)

Since it is possible to define dissimilarity measures for
sequences taking values in a finite set Σ, we reverse
the relation defined in Eq. (4) to obtain the desired
autocorrelation measure:

R̂xx(k) = ρ(xj , xj+k) = 1 − 2d(xj , xj+k). (5)

Here, we consider the following dissimilarity measure
between subsequences of fixed length K:

d(xj , xj+k) =
1

K

K−1∑

i=0

δ(xi+j , xi+j+k), (6)

where δ(xi, xj) = 0 if xi = xj and 1 otherwise.

Finally, since the autocorrelation estimates R̂xx(k)
obtained from Eqs. (5) and (6) generally exhibit a
nonzero mean R̄, a large zero-frequency peak and its
associated side-lobes appears in the estimated power
spectrum. These features obscure the spectral char-
acteristics of interest, so we remove them by replacing
R̂xx(k) with R̂xx(k) − R̄ in Eq. (3).

3 Validation results

Fig. 1 summarizes two results obtained using the
spectrum estimation procedure just described, ap-
plied to a perfectly periodic sequence of length L =
100, corresponding to 20 repetitions of the subse-
quence GGCTG. The higher-amplitude (solid) curves
in these plots correspond to the spectrum estimates
obtained using two different lag windows, and the
lower-amplitude (dotted) curves correspond to the
permutation-based validation results discussed be-
low. The left-hand plot was obtained using the rect-
angular window wk = 1 for −25 ≤ k ≤ 25 and the
right-hand plot shows the results obtained using the
triangular Bartlett window defined on the same sup-
port set (Priestley, 1981, p. 439). As expected, the
Bartlett window reduces variability at the expense of
increased bias, which appears here in the form of re-
duced intensity spectral peaks. In both cases, a clear
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Figure 1: Estimated spectrum and permutation lim-
its using rectangular (left) plot and Bartlett (right
plot) lag windows

peak is evident at the fundamental frequency f = 0.2,
corresponding to the period P = 5 of the repetitive
sequence, and a weaker peak appears at the second
harmonic, f = 0.4. The key points here are first, that
much of the machinery of classical spectral analysis
(e.g., classical lag windows) can be applied to the
finite-set formulation proposed here and second, that
this procedure gives the correct results in the case of
simple periodic sequences.

The lower-amplitude (dotted) curves in Fig. 1 were
obtained by applying a variant of the computational
negative controls (CNC) strategy proposed by Pear-
son et al. (2004) for cluster analysis. Specifically,
after the spectrum estimate was obtained from the
original data sequence, the same spectrum estimation
procedure was applied to each of 50 random permu-
tations of this data sequence. These results provide a
useful frame of reference since the permutations de-
stroy any regular sequential structure present in the
original data sequence, giving essentially 50 white
noise sequences with the same distribution of val-
ues as this original sequence. Since these sequences
should exhibit constant power spectra, only those fea-
tures in the original spectrum that significantly ex-
ceed these randomized spectra should be regarded as
significant. The lower curve in Fig. 1 represents the
maximum value obtained, at each frequency f , from
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Figure 2: Effects of 5% (left plot) and 20% (right
plot) random substitutions on spectrum estimates

these 50 randomized results. In Fig. 1, both of the
plots show clear evidence of the periodic structure
present in the sequence since both the fundamental
and the second harmonic peaks clearly exceed this
lower reference curve.

For comparison, Fig. 2 shows the results obtained
for two contaminated versions of the periodic se-
quence considered above. Specifically, the left-hand
plot shows the results obtained for this periodic se-
quence contaminated with 5% random substitutions,
while the right-hand plot shows the results obtained
with 20% random substitutions. The rectangular lag
window was used in both cases since it gives intense
spectral peaks that are easily distinguished from the
randomized reference results. Motivation for consid-
ering this contamination model is two-fold: first, it
is directly relevant to the study of regular structures
in DNA sequence data and second, it is analogous to
the problem of outliers that causes significant bias in
real-valued dynamic data characterizations (Pearson,
2001). In particular, it is known that outliers “raise
the noise floor” in real-valued spectrum estimation,
obscuring high-frequency details (Martin and Thom-
son, 1982). Here, however, the fact that all data val-
ues must belong to the small set Σ bounds the magni-
tude of possible outliers and appears to substantially
reduce their severity. In particular, although com-
parison of Figs. 1 and 2 shows clearly that increased
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Figure 3: Effects of 5% (left plot) and 20% (right
plot) random deletions on spectrum estimates

contamination levels cause degradation of the spec-
tral peaks, both the fundamental and the second har-
monic peaks remain significant relative to the CNC
baseline even with 20% contamination.

Two other important phenomena in DNA sequence
characterization are random insertions and random
deletions, collectively known as indels. Fig. 3 shows
the results obtained for the periodic sequence consid-
ered above, but with 5% and 20% random deletions
in the left-hand and right-hand plots, respectively.
Comparing these results with the corresponding ran-
dom substitution results, it is clear that random dele-
tions pose a much more serious problem for spectrum
estimation on finite sets than random substitutions
do. Results obtained for comparable levels of ran-
dom insertions (not shown) are almost identical to
those shown here for random deletions.

4 Chromosome 22 results

Although space limitations do not permit a detailed
discussion, Fig. 4 shows the results obtained with
the spectrum estimator described here for a sequence
of 100 bases extracted from human chromosome 22
(July 2003 assembly, from http://genome.ucsc.edu).
This chromosome is approximately 50, 000, 000 bases
long and the sequence considered here corresponds
to bases 40, 052, 600 through 40, 052, 699, selected
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Figure 4: Spectrum estimate from a 100 base subse-
quence from human chromosome 22

because expert annotation indicates the presence of
an approximately periodic repetition of the sequence
GGA in the middle of this subsequence. The presence
of a peak at f ' 0.33 that is significant relative to
the CNC background spectrum in Fig. 4 is consistent
with this characterization.

5 Summary and extensions

This paper has presented a brief, preliminary sum-
mary of a spectrum estimation procedure for nominal
data sequences, for which ideas of linearity are inher-
ently inapplicable. The approach proposed here com-
putes autocorrelations from dissimilarity measures
that can be computed for nominal data sequences
without the need for encodings that may induce spu-
rious orderings on the data values. We are currently
exploring extensions of this idea that use alterna-
tive dissimilarity measures, including those that allow
specific mismatches and those appropriate to detec-
tion of more complex structures like complimented
palindromes (Gusfield, 1997, p. 139). In addition, it
is clear from the results presented here that outliers,
which pose a sigifncant problem for real-valued spec-
trum estimation (Martin and Thomson, 1982; Pear-
son, 2001), are not especially serious here. In particu-
lar, finite-set outliers correspond to the random sub-
stitutions considered in Sec. 3 where it was seen that

the biologically-motivated problem of random inser-
tions and/or deletions (indels) is much more serious.
Consequently, we are exploring spectrum estimation
and filtering ideas based on variable data windows
that can potentially address these issues.
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