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ABSTRACT 
This paper proposes a new method for designing IIR filter 

with peak error constraints and prescribed flatness constraints, 
such as zeros at stopband. It is based on the model reduction of 
a FIR function that satisfies the specification by extending a 
method previously proposed by Brandenstein et al. The 
proposed model reduction method retains the denominator of 
the conventional techniques and formulates the optimal design 
of the numerator as a semi-definite programming problem. 
Therefore, linear and convex quadratic inequalities such as peak 
error constraints and prescribed number of zeros at the stopband 
for the IIR filters can be imposed and solved optimally. 
Moreover, a method is also proposed to facilitate the efficient 
implementation of the model reduced IIR filters in multirate 
applications. Design examples show that the proposed method 
gives better performance, and more flexibility in incorporating a 
wide variety of constraints than conventional methods.   

I.   INTRODUCTION 
The design of approximately linear-phase IIR filters is 

traditionally being considered as a very difficult problem, 
because the performance measure such as the least squares or 
minimax errors and the stability constraint are highly nonlinear 
functions of the filter coefficients. It usually involves 
constrained nonlinear optimization, whose performance is rather 
sensitive to the initial guess. Very often, the optimization 
software will converge to unsatisfactory local minimum if the 
initial guess is inappropriately chosen. Another indirect but 
useful method for designing IIR filters is based on model 
reduction [1,2] of FIR prototype filters, which can be designed 
easily and optimally using existing methods such the Remez 
exchange algorithm and semi- definite or infinite programming. 
Basically, a FIR prototype filter with the given specifications is 
first designed. Model reduction is then applied to convert this 
FIR filter to an IIR filter of reduced order, having a similar 
characteristic as the original FIR filters. In addition to its simple 
design procedure, the advantage of the model reduction 
approach is that the resulting IIR filter is guaranteed to be 
stable, and the frequency characteristics such as the phase 
response of the FIR prototype filter is well preserved. However, 
it does not allow precise control of the frequency response and 
other constraints, such as prescribed number of zeros at the 
stopband or peak ripple constraints, to be imposed. One would 
also expect the performance of the model-reduced filter to be 
sub-optimal and it can be further improved. 

In this paper, we propose a new design method for IIR 
filters using a new constrained model reduction technique, 
which is a modification of the model reduction method 
proposed in [2]. Important advantages of the method in [2] are 
that the numerator and denominator can be determined 
separately and the stability of the model-reduced filter is 
guaranteed. More precisely, the denominator is first determined, 
followed by the numerator. This property allows us to 
incorporate linear and convex quadratic constraints and shape 
the frequency response of the final IIR filter by designing the 
numerator using semi-definite programming (SDP), given the 
denominator at the first stage. For illustrative purpose, we 
mainly focus on the incorporation of peak stopband error and 
prescribed number of zeros at the stopband to the final IIR 
filters. The former is useful to limit the undesirable sidelobes at 
the band edges and design results show that it yields 

considerable better performance compared to conventional 
model reduction methods. It should be noted that given the 
denominator, the design of the numerator using SDP with linear 
and convex quadratic inequalities is a convex optimization 
problem.  In other words, the solution, given the denominator, is 
guaranteed to be optimal. Owing to the improved frequency 
characteristics of the proposed design method, further 
optimization is usually not required. Since the constraints for 
prescribed number of zeros are just linear equality constraint 
after the denominator has been determined, they can be 
incorporated easily under the SDP framework. Interested 
readers are referred to [3] for more details of SDP in filter 
design. Moreover, we also proposed a modification of the new 
model reduction method so that the denominator of the model-
reduced filter is of the form Q(zM), where M is an integer. This 
is very useful in expressing the model-reduced filters in its 
polyphase representation, which provides efficient 
implementation of decimation/interpolation filters and other 
multirate applications [4]. Using these results, the design 
approach is further extended to the design of interpolated IIR 
filters, which exhibit comparable implementation complexity 
and performance but a lower system delay than conventional 
linear-phase interpolated FIR (IFIR) filters [5]. 

The paper is organized as follows: The model reduction 
technique proposed in [2] and the principle of the proposed 
constrained model reduction are described in Section II. The 
details of the SDP formulation of the peak design error and 
magnitude flatness constraints for the IIR filters are given in 
section III. The method to express the denominator of the 
model-reduced filter as Q(zM) is also proposed. Design 
examples, including the design of interpolated IIR filter, are 
given in Section IV to demonstrate the effectiveness of the 
proposed approach. Finally, conclusion is drawn in Section V. 

II.   MODEL REDUCTION   
To start with, suppose that we have designed the FIR filter 
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convert )(zH  to an IIR filter )(ˆ zH  with the following form: 
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where pL  and qL  are respectively the length of numerator and 

denominator of )(ˆ zH . As mentioned earlier, the advantage of 
this method is that P(z) and Q(z) can be determined separately. 
More precisely, Q(z) can be found without the knowledge of 
P(z). Therefore, unlike other model reduction technique, 
additional constraints can be readily incorporated during the 
determination of P(z), after Q(z) is found.  
A. — Determination of denominator 
In [2], a simple iterative design procedure was proposed to 
determine Q(z). First of all, let’s consider the following 
polynomial, which approximates Q(z)in the k-th iteration: 
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)()( nq k  can be calculated by minimizing the following objective 
function: 
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The basic idea is to find )(kq  such that )( )()( kkF q  is the 
smallest among all the iterations for a sufficiently large k. More 
importantly, the roots of the resulting )()( zQ k , which minimizes 

)( )()( kkF q  for an arbitrarily given )()( zX k , are proved to lie 

strictly inside the unit circle, and thus )(ˆ zH  is always stable. 
Interested readers are referred to [2] for more details. 

B. — Determination of numerator using SDP 
Once )(zQ  is designed, we want to approximate the response of 

)(zH  by )(zP , given )(zQ , in the least square (LS) sense. 
That is: 
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following matrix form: 
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This is a standard quadratic programming problem, which can 
be solved readily. However, large sidelodes are usually 
encountered at the band-edge of the model-reduced filter. 
Therefore, additional constraints on the stopband ripple 
constraints should be imposed to improve the frequency 
characteristic. Here, we formulate (2-6) as a SDP problem. To 
start with, one can decompose U  as GGU T=  so that it can be 
reformulated, by means of Schur complement [6], as the 
following linear matrix inequality (LMI):  

x
min   xcT      

subject to 0
1

f






 −−
Gp

Gpgp TTT aδ
, 

(2-7) 

where T]0,....0,1[=c and TT ][ px δ= .The advantage of 
formulating the objective function as LMI is that the resulting 
problem is convex and the optimal solution, if it exists, can be 
found. In addition, additional linear equalities and convex 
quadratic constraints can also be formulated as LMIs, as we 
shall illustrate in later sections.  
C. — Selection of the length of denominator 
Suppose that the desired passband response of )(zH , denoted 
by )(zH p , is given by: 

ωτω jj
p eeH −=)( , ω  in the passband. (2-8) 

where DL −−= 2/)1(τ  is the passband group delay of )(zH ; 
D  is the prescribed delay reduction parameter ( 0=D  
corresponds to its linear-phase counterpart). In order to 

approximate )(zH  with small enough errors using the 
technique in [2], we found that the length of the denominator of 

)(ˆ zH  should satisfy the following condition: 
  1+≥ τqL , (2-9) 

where  w  denotes the integer just larger than or equal to w. (2-
9) tells us that the savings of number of multiplications and 
additions would be more significant if model reduction is 
applied to FIR functions with lower system delay. Here, we 
prefer to choose D  such that: 

4/L≅τ . (2-10) 
This approximation allows us to reduce the system delay of 

)(zH  as much as possible, while keeping a good frequency 
characteristic of )(zH . It should be noted that a dump would 
appear at the transition band when the group delay is lower than 
that in (2-10). According to (2-10), the implementation 
complexity of )(ˆ zH  would be comparable to its linear phase 
counterpart, which has similar frequency characteristic as that of 

)(ˆ zH . The system delay on the other hand is considerably 
lower. 

III.   DESIGN OF CONSTRAINED IIR FILTER 

A. — Peak stopband error constraint 
Denote ε  as the prescribed peak stopband ripple to be imposed 

on the model-reduced filter )(ˆ zH . These convex quadratic 
constraints are given by: 

εω ≤2|)(ˆ| jeH , ω  in the stopband. (3-1) 
Substituting (2-1) into (3-1), given )(zQ , one gets: 
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Using Schur complement [6], it can be shown that the 
constraints in (3-2) are equivalent to: 
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Digitizing (3-3), these constraints on the peak ripples can be 
augmented to the existing LMI in (2-7) for determining )(zP .  

B. — Imposing linear equality constraint 

To impose 1−ωU  zeros on )(ˆ zH  at ωω =  in the stopband, 
the following relation should be satisfied: 
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Expanding (3-5) and after slight manipulation, one gets a set of 
linear equality constraints as follows: 
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and its matrix form is given by: 
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where nju
nu en ω−=,][A  and 0][ =ub . Here, nm,][A  denotes the 

thnm −),(  entry of a ( pLU ×ω ) matrix A . Assume that the 
number of constraints is smaller than the number of variables, 
part of the variables, called the redundant variables, can be 
expressed in terms of the remaining variables, called the 
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independent variables, when solving the SDP. First of all, 
rewrite (3-7) as follows: 
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number of redundant variables in )(zP .  Using (3-19), p  can 
be written in terms of rLp −p  as: 
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where NI  is an ( NN × ) identity matrix; NO  is an N  column 
zero vector. By substituting (3-9) into (2-7), rLp −h  can be found 

optimally by SDP, while satisfying the prescribed constraints. 
C. — Polyphase decomposition 
Polyphase representation of digital filters is useful to the 
efficient implementation of decimation/interpolation filters, as 
well as other multirate systems [4]. However, expressing the IIR 
filters in the form of (2-1) is rather inefficient. To do so, one 
should factorize the denominator )(zQ  as follows [7]: 
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where M  is an integer, (3-11) can be written as follows: 
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It is noticed that the length of )(~ zP  and )(
~

zQ  increases 
considerably to 1)1( ++−− pqq LLLM  and 1)1( +−qLM , 
respectively. The M-th polyphase decomposition of (3-12) is: 
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,~ zE
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 is the m-th polyphase component of )(~ zP . 
The drawback of this approach is that the numerical error of 
estimating the roots of )(zQ  would be large when qL  is large. 

Moreover, the length of )(~ zP  and )(
~

zQ  is unnecessarily long 
when M  is large. Since what is required is a denominator 
polynominal in Mz , it is desirable to generate such a 
representation directly from model reduction. To this end, the 
design procedure of determining the denominator, as described 
in section II-A, is modified. Instead of using the rational 
function as in (2-1), the model-reduced filter is assumed to have 
the following form: 
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where d  corresponds to the number of non-zero coefficients of 
)( MzQ , excluding )0(q . The vector )(kq  in (2-4) is modified as 

follows: 
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which can be solved by considering the corresponding rows of 
)(kB  and )(kd . According to [2], this modification does not 

violate the stability theorem, which holds for arbitrarily given 
)()( zX k . Hence, the model-reduced filter in the form of (3-14) 

is still stable, provided that )( )()( kkF q  is the smallest. More 
importantly, design result shows that the length of numerator 
and denominator is less than that using the direct expansion as 
described previously. 

IV.   DESIGN EXAMPLES 
Example 1: Low-delay IIR lowpass filters 
In this example, low-delay IIR lowpass filters are designed 
using the proposed constrained model reduction. The passband 
and stopband cutoff frequencies are respectively πω 45.0=p  

and πω 55.0=s . A low-delay FIR prototype filter of length L = 
45 and delay reduction parameter D = 11 is first designed using 
SDP [8] so that its passband group delay is about 11 samples. 
Model reduction is then applied to convert this prototype filter 
to an IIR filter. According to section II-C, it is sufficient to 
choose the length of numerator and denominator of the model-
reduced filter as 13=pL  and 13=qL , respectively. Model 
reducing this prototype filter without any constraints gives a 
passband error of 0.063 dB and a stopband error of 36.74 dB, as 
shown by the solid line in figure 1a and 1b. To limit the sidelobe 
at the band edge, peak stopband error constraint of 40 dB is 
imposed to the model-reduced filter. In addition, one zero at 

πω =  is also imposed. Figure 1 shows the design results of the 
IIR filter so obtained. It can be seen from the dash-dotted line in 
figure 1a and 1b that the maximum stopband attenuation of the 
proposed IIR filter is now increased to 40dB at the expense of 
slightly lower performance at the passband. Also, as depicted in 
figure 1d, the proposed IIR filter has one zero at πω = . In view 
of the implementation complexity, the proposed IIR filter 
requires 25 multipliers and 23 adders, which are about half of 
those required for this low-delay prototype FIR filter, and are 
comparable to those of linear-phase FIR filter of length 41. To 
express the above IIR filter in its polyphase representation with 
M = 4, the length of the numerator and denominator of the 
above IIR filter becomes 49 using the identity in (3-11). 
Therefore, the total number of nonzero coefficients is 62. To 
illustrate the flexibility of our approach, the denominator is 
constrained to the form )( 4zQ . The number of non-zero 
coefficients and length of the denominator are 7 and 25, 
respectively (i.e. d = 6), and the length of the numerator is 
chosen to be 25. Its number of non-zero coefficients is only 32. 
Employing the proposed model reduction without any 
constraints, the corresponding passband deviation and stopband 
attenuation are 0.064 dB and 38.38 dB, respectively. Again, 
additional constraints, including peak stopband error constraint 
of 40 dB and two zeros at πω = , are imposed to shape the 
frequency response of the model-reduced filter. Figure 2 shows 
the frequency and impulse response of the IIR filter so obtained. 
As seen from figure 2, all constraints are satisfied.  
Example 2: Low-delay interpolated IIR (I-IIR) filter 
Interpolated FIR (IFIR) filters [8] are useful FIR filter structure 
with significant savings in arithmetic complexities compared to 
the traditional direct form FIR filters. The basic idea is to 
implement the FIR filter in the form )()()( zIzGzF M= , i.e. a 
cascade of two FIR filters, where the model filter G(z) is used to 
meet the narrow transition band of the desired specification and 

)(zI  is used to eliminate the extra images that are created by 
)( MzG . In general, IFIR filters are applicable to both linear-

phase and low-delay case. Here, we consider the application of 
model reduction to the low-delay IFIR filter so that both the 
system delay and implementation complexity of the resulting 
filter, which we call the interpolated IIR (I-IIR) filter, can be 
further reduced. As an illustration, we shall consider the design 
of a narrowband lowpass filter with the following specifications: 

πω 09.0=p , πω 11.0=s , 02.0=pδ  (0.172 dB), 01.0=sδ  (40 

dB) and 5=M . To meet the above specifications, the low-
delay model filter G(z) has a length of 45 and passband group 
delay of 11 samples. While for the image suppressor )(zI , its 
length and passband group delay are 25 and 6 respectively. As 
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discussed in section II-C, the lengths of both numerator and 
denominator of )(ˆ zG  and )(ˆ zI  are chosen to be respectively 12 
and 7.  The proposed model reduction with 40 dB peak stopband 
constraints is then applied to both low-delay FIR filters. Figure 
3 (dash-dotted line) shows the frequency and group delay 
responses of the I-IIR filter so obtained. The passband deviation 
is 0.117 dB and the stopband attenuation is 40 dB. For 
comparison purpose, a FIR counterpart of the above I-IIR filter 
are designed, where )(zG  and )(zI  are linear-phase FIR 
lowpass filters with lengths 41 and 19, respectively. Its 
frequency and group delay responses are also plotted as solid 
line in figure 3a and 3b, respectively. The corresponding 
passband deviation and stopband attenuation are respectively 
0.169 dB and 40 dB, which are comparable to our design. 
However, this linear-phase IFIR filter has a passband group 
delay of 109 samples, which is significantly higher than that of 
the I-IIR filter (about 61 samples). Regarding the 
implementation complexity, the proposed I-IIR requires 36 
multipliers and 34 adders, while the linear-phase IFIR filter 
requires 30 multipliers and 28 adders. According to the 
discussion in section III-C, one can express the I-IIR filter in the 
polyphase representation with reduced implementation 
complexity compared to the direct expansion of denominator as 
described from (3-10) to (3-13). However, details are omitted 
due to page limitation. In summary, one can do so by assuming 
the model-reduced filter of )(zI  with the following form: 

)(/)()(ˆ M
II zQzPzI = . (4-1) 

Consequently, the m-th polyphase component of the resulting I-
IIR is given by: 

)()(
)()(

)( ,
, zQzQ

zEzP
zE

IG

mPG
mF

I= , 1,,1,0 −= Mm K , (4-2) 

where )(zPG  and )(zQG  are the numerator and denominator of 
the model-reduced filter of )(zG ; )(, zE mPI  is the m-th 

polyphase component of )(zPI . Finally, the proposed design 
technique can also be applied to the more generalized IFIR 
approach [9] and frequency response masking approach [10]. It 
is expected that the resulting filters will achieve lower 
implementation complexity in the low-delay case. 

V.   CONCLUSION 
A new method for designing IIR filters with peak error and 

magnitude flatness constraints is proposed. It is based on the 
model reduction of FIR prototype filters by a new model 
reduction technique. The proposed model reduction method 
retains the denominator of the conventional techniques and 
formulates the optimal design of the numerator as a semi-
definite programming problem. Linear and convex quadratic 
inequalities such as peak error constraints and prescribed 
number of zeros at the stopband for the IIR filters can be 
imposed and solved optimally. Moreover, a method to express 
the denominator of the model-reduced filter in terms of the 
integer power of z is also proposed. Design examples show that 
the proposed method gives better performance and more 
flexibility in incorporating a wide variety of constraints than 
conventional methods.   
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1a) 1b) 

 
1c) 1d) 

Figure 1. Design results of low-delay IIR filters in example 1 (peak stopband 
error constraint ε = 40 dB and one zero at ω = π). a) – c) Frequency response 
(passband details in smaller figure), stopband details and group delay response of 
lowpass IIR filters: dash-dotted line – proposed IIR filter; solid line – model-
reduced FIR filter. d) Pole-zero plot of proposed IIR filter.  

2a) 2b) 
Figure 2: Design results of low-delay IIR filters, in which the denominator is the 
polynomial in z4, in example 1 (peak stopband error constraint ε = 40 dB and two 
zeros at ω = π). a) Frequency response.  b) Impulse response of the numerator 
(top) and denominator (bottom).  

3a) 3b) 
Figure 3. Design results of low-delay interpolated IIR filter in example 2 (peak 
stopband error constraint ε = 40 dB for both G(z) and I(z)): a) and b) Frequency 
response (passband details in smaller figure) and group delay response of 
narrowband lowpass filters: dash-dotted line – proposed I-IIR filter; solid line – 
linear-phase IFIR filter. 
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