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ABSTRACT

This paper studies the problem of the simultaneous blind signal ex-
traction of a subset of independent components from a linear mix-
ture. In order to solve it in a robust manner, we consider the op-
timization of contrast functions that jointly exploit the information
provided by several cumulant tensors of the observations. We de-
velop hierarchical and simultaneous ICA extraction algorithms that
are able to optimize the proposed contrast functions. These algo-
rithms are based on the thin-QR and thin-SVD factorizations of a
matrix of weighted cross-statistics between the observations and
outputs. Simulations illustrate the good performance of the pro-
posed methods.

1. INTRODUCTION

Blind signal extraction (BSE) consists in the estimation of a subset
of the independent components that appear linearly combined in
the observations. BSE includes Blind Signal Separation (BSS) as
the particular the case where one is interested in all the independent
components. In the last decade powerful criteria and algorithms
have been developed to solve this problem [1]-[7].

Popular techniques like JADE [2] and SOBI [3] are robust in the
sense that they use joint criteria to obtain accurate estimates from
the available data. Other approaches, like the higher-order power
method (HOPM) [4] try to find the best least-squares rank-1 approx-
imation to a high-order cumulant tensor. In this paper, we propose a
robust reformulation of the later criterion which consists in finding
the best weighted least-squares low-rank approximation to a set of
cross-cumulant tensors of the observations. For the optimization of
the resulting criterion we develop the Thin-ICA algorithm, whose
hierarchical and simultaneous implementations are based, respec-
tively, on the thin-QR and thin-SVD factorizations. This algorithm
combines the advantages in flexibility of the simultaneous extrac-
tion methods with the good performance of the robust methods.

2. SIGNAL MODEL AND ASSUMPTIONS

Figure 1 shows the signal model. The complex vector of observa-

tions x(r) = [x,(t), -+ ,x,,(t)]” obeys the following equation
x(t) = As(r) +n(t) (1)
where s(t) = [s, (t), -+ ,sy(t)]” is the complex signal vector process

of N independent components, n(z) the noise vector process, and
A € CM*N i the mixing matrix (M > N).
We consider the following assumptions:

A1 The components of s(¢) are mutually independent, locally sta-
tionary and normalized to zero mean and unit variance.

A2 The noise vector process n(¢) is independent from s(z),
locally stationary, Gaussian, white (Ry(t,,t;) = 6(t, —
t,)En(t,)(n(t,))"]) and with a known correlation matrix
R (r,1) = E[n(t)(n(r))"] or one that can be accurately esti-
mated from the observations.

A3 The mixing matrix A is full-column rank.
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Figure 1: Signal model for the blind extraction of P sources.
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A4 There exists an order relation among the sources that is max-
imized by those we want to extract. For a given subset of
P desired independent components {s, (¢),...,sp(t)}, there ex-
ist time tuples 6 = (t,,...,7;) contained in the set ® = {6, €
Ri,m=1,...,r:if ¢>2, 6, € R2\ {(t,1),Vr € R} if g =2}
and some chosen positive weighting scalars w, (normalized so
as to verify g g wg = 1) that sort the following statistic of the
sources

2

Vols;) = Zwe‘Cum(sj(ll),~~~,sj(tq)) )

0cO

in such a way that these inequalities hold true
w®(si)2w®(sj), 1<i<P<j<N. ?2)

From (1) one obtains that AAH = R, (r,t) — Rn(t,7). Let
Qldiag(ol,...,O'N)Q{[ denote the trimmed down version of the
Schur decomposition of Rk (¢,7) — Rn(#,7). The N x M prewhiten-
ing system W = diag(ofl/z, . 0'1;1/2)(2{’ projects the observa-
tions onto the signal subspace and also spheres the resulting vector
of preprocessed observations

z(t) = Wx(t) (3)

In order to extract P desired independent components (1 < P <
N) we multiply them by the P x N semi-unitary matrix U, being
U =[u,,...,up] formed by orthonormal columns. This way, we
obtain the vector of P outputs or estimated sources

y (1) =U"z(1) e

3. A ROBUST CRITERION

One of the most popular contrast functions for the blind signal ex-
traction of a single source is based on the maximization of a higher
order cumulant of the output subject to a normalizing constraint.
A result in [5] shows that, subject to the semi-unitarity of U (i.e.
Ufdu = I,,), the following function

»
D(U) =Y, ) wo |Cum (y;(r,),- ’yi(lq))’2 )

i=10c0O

is a contrast for the extraction of P independent components:
s,(t),---,sp(t). By considering cross-cumulants of the observa-
tions at different time tuples 6 = (t,,...,7,), contained the set @,
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one exploits the temporal correlation of the observation process and
its possibly long term non-stationarity.

Let us introduce, for later convenience, g semi-unitary matrices
U[kLk =1,---,q, that try to estimate the mixing system WA, and
their respective linear estimates y ¥ (1) = UKHz(1), k=1,...,q of
the vector with the desired independent components. A less con-
strained contrast than (5) results from allowing the arguments of
the cumulants to be different [6], i.e,

Du(U) = i Z W )Cum <yl[1](t1)7... 7yl[q] (tq)> )2 _‘ (©6)

i=16€0

where U = {Ul!,... Uld},

Let us denote by Dy, (8) = diag(dy, (), - ,d,,(8)) a diagonal
matrix of P complex scalars, each one depending on one of the out-
puts and on the vector 8. The robust nature of the proposed contrast
function is a consequence of its least squares interpretation given in
[4]. The contrast function is a performance index of how well the
set of P-component g-way arrays {%;(Dy(e),g), V6 € O}, with
1<ji5--+,Jg <N elements

P
[ (Dy(6).0)]; ;= Zdyi(G)(u[.l],...u[q]) , )

i gl
= Ji Jq

approximate, in weighted least squares sense, the set of super-
symmetric arrays of gth-order cross-cumulants of the observations
{67(6) e CV-N v0 € O}, with 1 < j,..., j; <N elements

[%qz(ﬂ)]jl,qu = Cum(zjI (), ), (1)) - (8)

as indicated by the following lemma.

Lemma 1 The constrained maximization of the contrast func-
tion ®4(U) is equivalent to the constrained minimization of the
weighted error function of the approximation

o(U) = Y wy min |%7(0)— €7 (Dy(0),U)| 7
gco Dy(9)

with respect to the set of semi-unitary matrices in U.

Proof: The proof of the lemma follows from the fact that

gg(U) = ezewe 165 (6) 17 — g (U) ,

where the operator | - ||% returns the accumulated energy of the ele-
ments in the array.

4. THE THIN-ICA EXTRACTION ALGORITHM

A good method to maximize the proposed contrast is to optimize
it cyclically with respect to each of the matrix arguments while
keeping fixed the others. For this purpose, we will find it use-
ful to distinguish between sequential notation (k) which indicates
that the variable takes its value at the k-th iteration and the cyclic
or modulo-g notation specified by the corresponding superindex
[k] where [k] = (k mod q) + 1. Then, at the (k)-th iteration we
maximize <I>®(Um o 7U[q]) with respect to the extraction matrix

UK =U® while UK-11 ... Ulk—a+1] gre kept fixed. It is conve-
nient to define a new function

q)(kfl)(U(k)) = q;.@(...’U[k*CI+1]7U(k)7U[k*1]7...)

Il
™~

u(k)HMlgk—l)ul@ ©)

i

i=1

which separates the dependence of the variable to optimize u®
(the argument of this new function) from the previous ones

whose influence is collected into the constant matrices Ml(k_l)ﬂl =
1,...,P, given by

MED = Y el D(0) (e @) o)
6cO
i (O) = Cum(a(ty) vy,
.. ’ygk_q+])(t[k—q+1])) (11)
The cyclic maximization of IDG(U[I] .-+, Uldly is implemented by

the sequential maximization, through iterations, of the functions
@g‘*l) (UW®), updating the cyclic variable UKl = U®) after each
optimization.

The key role in the algorithm will be played by the following
matrix weighted statistic

[, v (SIS

1 My a)) (12)

which is proportional to the gradient of @g_1>(~) evaluated at
U*=4), Let us define the thin-SVD factorization of the statistic

A (k-1 H

ChV =V, Ap VR (13)

where V; is a N x P matrix formed by the P left singular vectors
associated to the singular values of C(zk; b, Ap, p is the diagonal

matrix of singular values and V, is the P x P matrix of right singu-
lar vectors.

Theorem 1 (Simultaneous optimization) In each iteration, the
choice resulting from the thin-SVD factorization

k H
v = v, v (14)
guarantees a monotonous ascent in the contrast function

@8*2) Uy < k-l k) (15)

Proof: We will prove that the new candidate UM satisfies the fol-
lowing chain of inequalities

P
i=1
P
= Y ul om0 7
=~ i i i
(@ 2
S Z ul(k)HMl(k7 1) u[(k*(]) (] 8)
i=1
b L
< Z ul(k)HMl(kfl)ul(k) (19)
i=1
— k—1 k
= oD (20)

which guarantees the monotonous ascent. The first inequality can
be rewritten in the form

(a)

k—q)H (k-1 4 KH G (k—1
Te{Uk- A Ck Ny < T{u®Hickoly

and it is straightforward to show that it is true for Uk = VLVg
since this proposed choice is the one that maximizes the right-hand-
part of the equation, simultaneously, with respect to all the columns

ul®),uld),
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Each of the hermitian and positive semidefinite matrices
M* =1 have a unique hermitian and positive semidefinite square

root (Mfk’l))l/ 2. Then, we can define the vectors

a® = (M k=12 k);.,.;(M(kfl))lﬂul(f)}

( (
1 1 P
ool = (M) 2D (D) /2 )

and rewrite the chain of inequalities as

(a) (b)
(k=2) (p1(k=1)y _ || (k=1)112 (OH , (k—1) (k—1) (y 7(k)
o2 (Uk1) = ok |2 < ja®H 1] < ol (Uh)

By applying Cauchy-Schwarz inequality

a0 <l 2

one can see from (a) that ||| < Hoc(k) ||l This also proves (b)
and, thus, the monotonous ascentCIJ Juk-Dy < CIJ(G;‘ D).

g
Due to the bounded nature of the contrast function, the
monotonous ascent guarantees that the only strictly stable points of
the algorithm are the local maxima of the contrast. To the contrary
to other algorithms, here the monotonous ascent property does not
depend on the signs of the cumulants of the sources.
A different implementation of the Thin-ICA algorithm can be
obtained from the hierarchical optimization of the contrast function.

Theorem 2 (Hierarchical optimization) In each iteration, the fol-
lowing choice

uk = qQ, (22)

resulting from the thin-QR factorization C(Zk; = QR p, per-
forms the hierarchical optimization of the contrast function with re-
spect to the columns of U®. This choice does not guarantee an
overall monotonous ascent in the contrast, but it does guarantee a
hierarchical monotonous ascent in the first non-convergent mode,
ie, whenu,...,u, | have already converged to some fixed value
then

wlk=DHN[(R=2) g (k=1 <

i i i

u§’<>H Mgk*Uul(k) . (23)

The idea for the proof of theorem consists in that the choice uk =
Q hierarchically maximizes Tr{U ®# C k 1} with respect to the

columns u,---,up, in such a way that each i-th column satisfies

the constraint u§k>H uﬂ,k) =4, j Vj <. The optimized vector ul(k) in
this implementation is identified with the first column of a House-
holder reflection.

Taking into account that the first columns are less constrained
than the last ones, together with assumption A4, it results conve-
nient after each iteration to sort the columns of U®), and its prede-

cessors, according to yi(k) ( )HM(" Du (k> , SO as to obtain

10> (24)

4.1 Supersymmetry of the solutions

The mutual independence of the sources guarantees the theoretical
supersymmetry of the arrays of cross-cumulants of the observations
%, (0),V0 € ©. However, in practice, small stochastic deviations
occur at the estimation of the cross-cumulants from the observa-
tions, which result in a loss of this property. When this happens, the
best approximation is not supersymmetric and the candidate ma-
trices, in general, have different values ulll # .. F# UM at their
convergence. Fortunately, the previous situation can be easily pre-
vented by restoring the supersymmetry of the arrays after their es-
timation. This allows the algorithm to converge to the solutions
Ul = ... = Ul which extract the independent components.

4.2 Projection

The knowledge of the supersymmetry of the solutions can be also
exploited to accelerate the convergence of algorithm by adding, at
the end of each k-th iteration, a projection step onto the supersym-
metric manifold
{uk gk gkt g gy

However, this projection should be applied with care. It is only
justified in special cases, such as when for each 6 € O all the signs
of Cum(s;(t,), -+ ,s;(t4)), i=1,...,N, coincide. This is a situation
where a convexity result applies to the contrast function, preserving
the monotonous ascent (see [7] for more details).

4.3 Extraction of a single source

When one considers the extraction of a single source the QR and
SVD implementations of the Thin-ICA algorithm coincide. In this
case, and as long as the cumulants are not affected by the noise,
a result presented in [6] proves that the contrast function has no
deceptive maxima, i.e., all the local maxima correspond to solutions
that extract independent components.

Additionally, in the case of the approximation to a single cumu-
lant tensor, one can observe that the Thin-ICA algorithm without
projection reduces to the high order power method [4], while with
the projection step it reduces to symmetric version of the high order
power method [7] or fixed point implementation of the Fast-ICA
algorithm [8].

4.4 Combining statistics of different orders

It is also possible to combine cross-cumulants of different orders in
the contrast function but this requires a slightly more cumbersome
notation and, for this reason, it has not been initially considered
in the paper. The basic idea is to use as much extraction candi-
dates as the maximum order g, of the involved cross-cumulants,
and to define an invariant contrast function <I>®(Um,-~- 7U[qm])
with respect to permutations in the matrix arguments. The per-
mutation invariance can be obtained by including in the contrast
function, for any given order ¢ < g,,, cross-cumulants with all the
possible combinations of g arguments that can be obtained from

DU, 319 (1, ).

In [9] one can find an example of application of a Thin-ICA
algorithm to blind DS-CDMA detection were the estimation was
improved by choosing a contrast function that combined fourth and
sixth order cumulants.

5. SIMULATIONS

When we tested the proposed algorithm, we observed similar re-
sults to those of the SOBI and JADE when using the same cumu-
lant tensors that these later algorithms exploit, and better results
when some additional relevant tensors are taken into account. How-
ever, the Thin-ICA algorithm also allows the extraction of subsets
of sources. In this section we will illustrate this last property.

In our example an array of 20 sensors registers 500 snapshots of
the observations. These are a random instantaneous mixture of 10
independent signals, in presence of white additive Gaussian noise,
and with a maximum signal to noise ratio of 15dB. The desired
independent components are four correlated signals obtained, af-
ter normalization, from the ﬁltering of four binary processes by
the corresponding systems: F,(z!) = (1+0.9z"1)~L E(z7!) =
(1-09z7 171 F(z!) = (1409271 and Fy(z7!) = (1 -
0.9z72)~!. The other six independent components are samples of
temporally i.i.d. uniform processes. We chose second order statis-
tics ¢ = 2 because for short data records like this, they are usually
the most reliable, and we set ® = {(¢,t — 1), (t,t —2),---,(t,t —4)}
because these four pairs guarantee that the considered independent
components can be ordered according to (2).
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Table 1: Thin-ICA algorithm for extraction.

1. Set P<N the number of independent
components to extract from x(f).

2. Prewhitening z(r) = Wx(t);

3. Estimate V0 €O the g-way arrays (0).

4. Initialization:

(6
Ut = ... =y = I,

5. Compute VO € O the cross-cumulant vectors
C<k71>(9), i=1,...,P of elements (1<j<N)

zy

Vi

N N
k—1 k—1)x k—q+1)*[cpz
[C;yi )(6)]] N jz—l ) .jz—l u§2i i .ui/i o [gq (9)]-/.3-/‘27-“3.74
2= 4=

(a) Obtain the statistics (1 <i<P)
MED =Y wael D (6)(cly V (0)",
6cO
~(k—1 k—1 k— k—1 k—
G = MU0 Myl

(b) Ascend in the contrast using 1. or 2.

1. Simultaneous approach:
~(k—1 .
[V Zp,ps Vil = svd(CE,0);
U =v, vl
2. Hierarchical approach:
[U(k>vRP><P} = qr(C;];UvO);
Sort the columns of U® . Uk-g+1)
according to the ordering in (24).

6. IF projection, U(k*1)7~-~,U(k*q+1):U<k); END;

7. Estimate P independent components:

y W) =0 z();

8. IF Convergence STOP
ELSE k=k+1; RETURN TO 5

The implementation' of the Thin-ICA algorithm is summarized
in table 1. We set P = 4 and run the simultaneous version of the al-
gorithm in one hundred random experiments. As can be observed in
figure 2, in all the cases we extracted in a few iterations the desired
subset of sources.

6. CONCLUSIONS

By extending a previous result in [4] we have suggested a robust
contrast function for the extraction of a subset of desired inde-
pendent components, which consists in the maximization of the
weighted least-squares low-rank fit to a set of cross-cumulant ten-
sors. In order to optimize this contrast function, we have proposed
the Thin-ICA algorithm, and two different implementations based
on the thin-SVD and thin-QR factorizations. This algorithm allows
the simultaneous extraction of subsets of independent components
from the mixture, and provides one possible robust extension of the
high-order power method and Fast-ICA algorithms.

I'The thin Singular Value Decomposition and the thin QR decomposition
both have, for P < N, a computational complexity of O(NP?) flops. An
efficient implementation of them can be found in the MatLab commands
svd(-,0) and qr(-,0).
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Figure 2: Lower figure presents the rows ng of the resulting 4 x 10
mixing matrix G = U”'WA after the convergence, in one sample
experiment. Upper figure shows the performance index P, ;, (G) =
(PN —1)"'22, (llgll;/llg;ll« —1) versus iterations. Conti-
nuous line is the median curve of convergence for 100 experiments,
the dashed lines denote the 5" and 95" percentiles.
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