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ABSTRACT

Conventional delayless subband filters use LMS or NLMS
algorithm for coefficient adaptations in subband domain. It
is known that Kalman filter (KF) algorithm shows better
convergence than the conventional LMS/NLMS algorithm
but with the cost paid in computational complexity. In
this work, we show that introducing parallel Kalman filters
(PKFSs) in the subband domain performance can be made
better both in terms of ERLE and computational complex-
ity than that of the LMS/NLMS algorithms.

1. INTRODUCTION

In recent years, adaptive filters are used in many applica-
tions such as adaptive modeling, adaptive noise cancella-
tion, adaptive signal enhancement and adaptive echo can-
cellation [1], [2]. In some applications, such as acoustic echo
cancellation and active noise control, where the number of
filter taps to be estimated is large, computational complex-
ity is a burden. Moreover, adaptive filters with many taps
suffers from slow convergence, especially, if the eigenvalues
of the underlying correlation matrix of the input signal are
widely spread [2]. One approach for reducing the compu-
tational complexity of long adaptive filters is to use block
signal processing methods [3]-[5]. The major disadvantage
of such approaches is a long block delay associated with
the adaptive weight update. The use of parallel Kalman
filters (PKFs) in the time-domain is another approach for
improving convergence rate [6].

Recently, subband techniques have been developed for
adaptive filters to reduce the computational complexity and
to improve the convergence rate [7]. As both the number of
taps and weight update rate can be decimated in each sub-
band, computational burden is reduced by approximately
the number of subbands. Faster convergence is achieved due
to the reduction of spectral dynamic range in each subband.
The major disadvantages of subband structures, however,
are aliasing due to downsampling [8] and the transmission
delay introduced into the signal path due to the bandpass
filters used for deriving the subband signals. To avoid sig-
nal path delay, Morgan and Thi reported a new type of
subband adaptive filter architecture in which the adaptive
weights are computed in subbands but collectively trans-
formed into an equivalent set of wideband filter coefficients
[9]. An additional benefit accrues through a significant re-
duction of aliasing effect. Commonly, subband implementa-
tions employ LMS or normalised LMS (NLMS) algorithm
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Fig. 1. Delayless subband parallel Kalman filter architec-
ture.

for its coefficients adaptation in each subband [3]-[5], [7]-
[9]. Although the estimation algorithm of adaptive filters
using such a method is simple, they are weak for the case
of nonwhite input signal [6].

In this paper, we modify the delayless subband adaptive
filter [9] by replacing the conventional NLMS/KF algorithm
with PKFs for coefficients adaptation in each subband. In-
corporation of parallel architecture in each subband pro-
vides a flexibility in trade-off between the number of sub-
bands and parallel filters in each subband for optimum per-
formance of subband adaptive filters. A design method for
PKFs in the subband domain is proposed. Computational
complexity and experimental results comparing the perfor-
mance of such adaptive subband parallel NLMS (PNLMS)
and PKFs are shown.

2. DELAYLESS SUBBAND PARALLEL
KALMAN FILTERS

Fig. 1 shows the architecture of the subband adaptive filter
with PKFs. The reference signal z(t) is filtered by W to
cancel out the disturbance signal d(t). The objective is to
adjust the coefficients of the wideband filter W in order to
minimize the local error in a mean square sense [9]. The
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wideband error is expressed as
e(t) = d(t) — w" (t)=(t),t = 0,1,2, ... (1)

where ©(t) = [z(t),z(t — 1),...,2(t — N + 1)]7 is a vector
comprising the N most recent reference samples, the su-
perscript T denotes the transpose operation, and w(t) is a
vector of length N wideband weights.

2.1. Subband Decomposition of Signals

There are several ways to derive complex subband signals
employing polyphase FFT techniques [10]-[11]. In this pa-
per, the reference signal z(t), and the disturbance signal
d(t) are divided into several subband signals by using a
polyphase FFT technique described in [10]. This technique
realizes M contiguous single-sideband bandpass filters with
their outputs downsampled by a factor D = M/2 to pro-
duce M complex subband signals. Also no band shifting is
necessary due to regular structure; even subbands are cen-
tered at dc while odd subbands are centered at one half of
the decimated sampling frequency [9]. Since for real signals,
the wideband filter coefficient are real, only half of the sub-
bands need to be processed. The m-th subband reference
signal is mathematically expressed as

K—1 ,

Tm(t) = Z ake]2M - z(t—k) (2)
k=0
M—

! j2rmn L1
= e M E n1x(t — k) (3)
1=0

n=0

where aj are the coefficients of a K point prototype filter
and K = LM, L is a integer. It is obvious that Eq. (2)
expresses the convolution of the frequency-shifted prototype
filter with the filtered reference signal to obtain a single
sideband reference signal. And the expression in Eq. (3)
shows how the inverse FFT comes into play. The signal
d(t) is also decomposed in the similar way to obtain d, (t)
corresponding to the m-th subband.

2.2. Configuration of Parallel Kalman Filters

In this paper, adaptive weights are computed in the sub-
band domain using the complex PKF algorithm and then
collectively transformed into frequency domain using the
FFT, appropriately stacked, and inverse transformed to ob-
tain the wideband filter coefficients, thereby eliminating any
delay associated with the cancellation signal. For N wide-
band adaptive weights and a decimation factor D, there are
N/D adaptive weights for each subband. Let w, is a vector
of N/D subband weights, ©.,(t) = [z(t),z(t — D), ..., z(t —
N+D)]" is a vector comprising the N/D most recent signals
of the subband filter reference signal. Each subband signal
is split into J segments for coefficients adaptation using the
PKF algorithm as shown in Fig. 2 for the m-th subband.
The adaptive weights of each subband are divided into J
parts, namely Part 1, Part 2,..., Part J. As an example,
the m-th subband FIR adaptive filter weights w,, in the
z-domain can be represented as

N/D—1

Win(2) = Z Wim,iy2 (4)
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Fig. 2. Configuration of parallel Kalman filter of m-th
subband.

If we divide the adaptive weights of the m-th subband w,, =
[0 (m,0)s Wem,1ys -y Wim,N/D—1y] | into J parts, then w,, can
be expressed as

T T T T
Wm = [w(m,1)7 w(m,2)a (EX3} w(m,J)] (5)

The adaptive weights of each part of the m-th subband are
given by

Wiy = [W(m, Pi—1))s Wiam, Plim1)+1) s Wiam, Pim1)] 5
i=1,2,.,0 (6)

where P = N/(JD) is the number of elements of each part
and J denotes the number of division in each subband. In
Eq. (6), wm,p(i—1)) denotes the P % (i — 1)-th coefficient
of the m-th subband. If necessary some zeros should be
added to the J-th part of the adaptive weights so as to
make P = N/(JD) an integer.

We divide the m-th subband signal @,,(¢) into J parts
expressed as

@i () = [@om,1) (£), Bom,2) (£), wves T,y ()] (7)

Here, (., ;)(t) represents the m-th subband signals of the
i-th part defined as

:L'(m,i)(t) = [:Em(t — P(l — 1)D),
zm(t — (P(i—1)D + D)), ..

ey Zm(t — (P(i — 1)D + JD))] (8)
The J segments of the impulse response described in Eq.
(6) are estimated using J number of parallel filters. The

total output of the .J pieces of the filters in parallel is given
by

where d,,, (t) is the estimated subband disturbance signal at
time ¢, and W, ;)(t) denotes the estimated weight vector.
Notice that the order of the resultant filter in each subband
is JP.
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Fig. 3. Delayless subband adaptive parallel Kalman filter
echo canceler.

2.3. Estimation Algorithm of the Parallel Kalman
Filters

To obtain the optimal solution of the coefficients of the re-
sultant filter, the subband total error e, (t) = dm (t) —dm (t)
is used to estimate the parameters. The optimal algorithm
for the ¢-th part in the m-th subband is obtained as shown
in the following:

Wim,i) () = Wi, iy (E — 1) + kem i) (t)er, (£) (10)
em(t) = dum () — don (8) (11)

Qm,iy (t — 1)T(m ) (t)
i) () = 12
o= 35T 1) (8) Qom 1y (t = 1)@, 1) (£) "

Qim,iy () = [T = Kooy (D)o 1y ()] Qi) (E — 1) (13)
i=1,2,..,J; t=D,2D,3D....

Q(m,i)(0) = Bem,iyI; Bim,iy > 0 (14)

Wim,i)(0) = 0 (15)

where A\ = E{en(t)en,(t)} and I is the unit matrix of di-
mension M x M. The superscript '+’ denotes complex con-
jugation and the H indicates Hermitian transposition.

3. ACOUSTIC ECHO CANCELLATION

The acoustic echo canceler has been implemented using the
proposed subband PKF algorithm as shown in Fig. 3. This
is an open-loop echo canceler configuration where z(t) is
interpreted as the far-end received signal which drives the
loudspeaker, H is acoustic echo path transfer function to the

microphone signal d(t), and e(t) is the de-echoed returned
signal (to which the desired signal is added). The assumed
length (V) of the acoustic echo path is 2048. To decom-
pose the signals into 16, 32, and 64 subbands; we use the
MATLAB fir1(63,1/16), fir1(127,1/32), fir1(255,1/64) rou-
tine respectively. As the polyphase FFT implementation is
assumed, only M/2 + 1 subband signals are estimated in
all cases. The subband adaptive weights are transformed
by 16/32/64-point (complex) FFT to obtain 16/32/64 fre-
quencies per subband respectively, which are then properly
stacked.

4. COMPUTATIONAL COMPLEXITY

Here, computational complexity is calculated based on the
number of multipliers per input samples, assuming that the
product of complex values is implemented through 4 real
multiplies.

For M subbands, the 2x oversampled subband decom-
position [10] requires one convolution of a K-length proto-
type filter and and one M-point real FFT for each block of
M /2 input samples. Therefore, the subband decomposition
requires

C1 =2K/M + 2log, M (16)

real multiplies per input sample.

Since only half of the M complex subband signals are
processed and subband filters are downsampled by a factor
D = M/2, each of the M/2 lower subbands has to update
2N/M complex adaptive weights for each block of M /2 in-
put samples. For close-loop version, with LMS/NLMS or
parallel LMS/NLMS algorithm this requires

Co = 8N/(ps * M) (17)

real multiplies per input sample. Here p, denotes the num-
ber of parallel section in each subband. For KF or PKF,
the value of (5 is given by

Co = 8(2N/(ps * M))” +16(2N/(ps * M))  (18)

For open-loop version, an additional C> real multiplies per
input sample are required to evaluate the subband signal
path convolutions. The subband-to-wideband filters map-
ping requires a 2N/M-point complex FFT for each of the
M /2 lower subbands and an N-point inverse real FFT. An
2N/M-point complex FFT requires about 4N/M log, (2N/M)
real multiplies. In practice, the wideband weights transfor-
mations are performed every N/J input samples, because
the wideband filter output cannot change much faster than
the length of its impulse response [9]. Typical value of .J is
in the range one to eight. This part thus requires

Cs = [21og,(2N/M) + log, N].J (19)

real multiplies per input sample.

The wideband convolution is performed by partitioning
the wideband filter into p segments. The number of multi-
plies per input sample is given by

Ci = Np + 2plog,(2N,) + 4(p — 1) + 2log, (2N,)
= N/p+2(p+1)log,(2N/p) +4(p—1)  (20)
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Table 1. Comparison of computational complexity

No. of No. of parallel LMS Kalman

subband sections algorithm algorithm
(M) per subband C ERLE C ERLE
64 1 1001 14.74 17897 22.80
16 4 1001 9.23 17897 22.69
64 8 553 7.51 873 18.83

considering that the product of complex values is imple-
mented through 4 real multiplies. Here N, = N/p and the
value of p is optimized so that the complexity over the di-
rect convolution is optimized. Thus the total number of
real multiplications required for the echo canceler is

C=0C1+20C+C3+ Cy (21)

As a comparison, it is to be noted that the computational
complexity of the fullband LMS algorithm is approximately
2N and that of fullband Kalman filter is SN? + 16N [6].

5. SIMULATION RESULTS

To evaluate the modified algorithm, we present computer
simulation results. For comparison among different algo-
rithms, consider the design of an N = 2048 tap real wide-
band echo canceler. Fig. 4 shows ERLE obtained for differ-
ent algorithms namely NLMS, PNLMS, KF and PKFs. As
expected, with equal number of subbands, KF/PKFs show
better results than the conventional NLMS/PNLMS filter.
The number of real multiplications required and ERLE ob-
tained after 3000 iterations for each adaptive scheme are
calculated and summarized in Table 1. The computational
complexity is very large for KF than that of NLMS/PNLMS.
But computational complexity drastically reduces for PKF's.
As for example, with M = 64 and p; = 1, ERLE obtained
and number of real multiplies required for NLMS are 1001
and 14.74 and that for KF are 17897 and 22.08, respec-
tively. Whereas, with M = 64 and p, = 8, ERLE obtained
and number of real multiplies required for PKFs are 873
and 18.83, respectively. Thus it is clear that PKFs show
better results in terms of both ERLE and computational
complexity when optimal number of parallel sections are in-
corporated in each subband. Moreover, the computational
complexity of PKFs is comparable with that of PNLMS
with much better ERLE index.

6. CONCLUSION

In this paper, we have designed an echo canceler in the
delayless subband structure where coefficients of the filters
are estimated using PKFs and PNLMS. Although KF in
the subband domain yields improved convergence rate over
NLMS/PNLMS filters, the cost paid to computational com-
plexity is too high. But for our proposed PKFs in the sub-
band domain computational complexity drastically reduces.
In addition, PKFs maintain better convergence rate than
that of NLMS/PNLMS. Thus the echo canceler employing
PKFs in the subband domain offers computational savings,
as well as faster convergence over that of NLMS/PNLMS
filters.
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Fig. 4. ERLE obtained by different algorithms.
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