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ABSTRACT

In this paper, the problem of estimating second-order statistical
functions for generalized almost-cyclostationary (GACS) processes
is addressed. The class of such nonstationary processes includes,
as a special case, the almost-cyclostationary (ACS) processes. ACS
processes filtered by some linear time-variant channels are further
examples. It is shown that, for GACS processes, the cyclic correlo-
gram is a mean-square consistent estimator of the cyclic autocorre-
lation function. Moreover, well-known consistency results for ACS
processes can be obtained by specializing the results of this paper.

1. INTRODUCTION

In the last two decades, a big effort was devoted to the analysis and
exploitation of the properties of the almost-cyclostationary (ACS)
processes. In fact, almost-all modulated signals adopted in com-
munications can be modelled as ACS (see e.g., [4] and [13] for a
comprehensive treatment in terms of higher-order statistics). For an
ACS process, multivariate statistical functions are almost-periodic
functions of time and can be expressed by (generalized) Fourier se-
ries expansions whose frequencies, referred to as cycle frequencies,
do not depend on the lag shifts of the processes.

More recently, wider classes of nonstationary processes have
been considered in [7], [8], [9], [10], and [11]. In particular, in
[7], the class of the generalized almost-cyclostationary (GACS) pro-
cesses has been introduced and characterized. Processes belonging
to this class exhibit multivariate statistical functions that are almost-
periodic functions of time whose Fourier series expansions have
coefficients and frequencies, referred to as lag-dependent cycle fre-
quencies, that can depend on the lag shifts of the processes. The
class of the GACS processes includes, as a special case, the class
of the ACS processes. Moreover, chirp signals and several angle-
modulated and time-warped communication signals are GACS pro-
cesses.

In [8] and [9], it is shown that several time variant channels
of interest in communications transform a transmitted ACS sig-
nal into a GACS one. In particular, in [9] it is shown that the
GACS model is appropriate to describe the output signal of some
mobile communication channels when the input signal is ACS and
the product transmitted-signal-bandwidth times data-record-length
is not too small. Thus, the GACS model turns out to be useful
in modern mobile communication systems where wider and wider
bandwidths are required to get higher and higher bit rates and, more-
over, large data-record lengths are necessary for blind channel iden-
tification techniques or detection algorithms in highly noise- and
interference-corrupted environments. Therefore, to properly equal-
ize such time variant channels, statistical functions of the output
GACS process need to known or estimated.

In the present paper, mean-square consistent estimators for
second-order statistical functions of GACS processes are proposed.
In particular, it is shown that for a GACS stochastic process satisfy-
ing some mixing conditions expressed in terms of the summability
of its second- and fourth-order cumulants, the cyclic correlogram
is a mean-square consistent estimator of the cyclic autocorrelation

function. It is shown that well-known consistency results derived
for ACS processes (see e.g., [2], [3], [5], [6]) can be obtained as a
special case of the results of this paper.

2. SECOND-ORDER GACS STOCHASTIC PROCESSES

In this section, the second-order characterization of GACS stochas-
tic processes is briefly reviewed. See [7] and [8] for a more com-
prehensive treatment in the nonstochastic approach.

A finite-power complex-valued continuous-time stochastic pro-
cess x(t) is said second-order GACS in the wide sense if its autocor-
relation function

Rxx∗(t,τ) , E{x(t + τ) x∗(t)} (1)

with E{·} denoting statistical expectation, is an almost-periodic
function of time in the sense of Bohr (or, equivalently, uniformly
almost periodic in t in sense of Besicovitch [1]). That is, for each
fixed τ , Rxx∗(t,τ) is the limit of an uniformly convergent sequence
of trigonometric polynomials in t:

Rxx∗(t,τ) = ∑
α∈Aτ

Rxx∗(α,τ) e j2παt . (2)

In (2), the real numbers α and the complex-valued functions
Rxx∗(α,τ), referred to as cycle frequencies and cyclic autocorre-
lation functions, are the frequencies and coefficients, respectively,
of the (generalized) Fourier series expansion of Rxx∗(t,τ), that is,

Rxx∗(α,τ) , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
Rxx∗(t,τ) e− j2παt dt (3)

with the limit independent of t0. Moreover,

Aτ , {α ∈ R : Rxx∗(α,τ) 6= 0} (4)

is a countable set which, in general, depends on τ .
Note that, even if the set Aτ is always countable, the set

A ,
⋃

τ∈R
Aτ (5)

is not necessarily countable. Thus, the class of the second-order
wide-sense GACS processes extends that of the wide-sense ACS
which are obtained as a special case of GACS processes when the
set A is countable [3], [6].

A useful characterization of wide sense GACS processes can be
obtained by observing that the set Aτ can be expressed as

Aτ =
⋃
n∈I

{α ∈ R : α = αn(τ)} (6)

where I is a countable set and the functions αn(τ), referred to as lag-
dependent cycle frequencies, are such that, for each α and τ , there
exists at most one n ∈ I such that α = αn(τ). Thus, accounting for
the countability of Aτ for each τ , the support in the (α,τ) plane
of the cyclic autocorrelation function Rxx∗(α,τ) is constituted by
the closure of the set of curves defined by the explicit equations
α = αn(τ), n ∈ I. Furthermore, we have the following result.
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Theorem 2.1 The autocorrelation function Rxx∗(t,τ) of a second-
order wide-sense GACS process can be expressed as

Rxx∗(t,τ) = ∑
n∈I

R(n)
xx∗(τ) e j2παn(τ)t (7)

where the functions R(n)
xx∗(τ), referred to as generalized cyclic auto-

correlation functions, are defined as

R(n)
xx∗(τ) ,


lim

T→∞

1
T

∫ t0+T/2

t0−T/2
Rxx∗(t,τ) e− j2παn(τ)t dt ,

τ ∈ T(n)

0, τ ∈ R−T(n)

(8)

with
T(n) , {τ ∈ R : αn(τ) is defined} (9)

and the limit in (8) independent of t0. �

Note that, in (7) the sum ranges over a set not depending on τ

as, on the contrary, it occurs in (2). Moreover, unlike the case of
second-order ACS processes, both coefficients and frequencies of
the Fourier series in (7) depend on the lag parameter τ . Thus, the
wide-sense ACS processes are obtained as a special case of GACS
processes when the lag-dependent cycle frequencies are constant
with respect to τ and, hence, are coincident with the cycle frequen-
cies [7].

The functions αn(τ) in (6)–(9) are such that, for each
τ , αn(τ) 6= αm(τ) for n 6= m. However, if more functions
αn1(τ), · · · ,αnK (τ) are defined in K (not necessarily coincident)
neighborhoods of the same point τ0, all have the same limit, say
α0, for τ → τ0, and only one of them is defined in τ0, then it is con-
venient to assume all the functions αn1(τ), · · · ,αnK (τ) defined in τ0
with αn1(τ0) = · · ·= αnK (τ0) = α0 and, consequently, define

R(ni)
xx∗ (τ0) , lim

τ→τ0
R(ni)

xx∗ (τ) i = 1, . . . ,K (10)

where, for each i, the limit is made with τ ranging in the neighbor-
hood where the function αni(τ) is defined. With convention (10),
by taking the coefficient of the complex sinewave at frequency α

(see (3)) in both sides of (7), it follows that the cyclic autocorre-
lation function and the generalized cyclic autocorrelation functions
are linked by the relationship

Rxx∗(α,τ) = ∑
n∈I

R(n)
xx∗(τ)δα−αn(τ) (11)

where δγ denotes Kronecker delta, that is, δγ = 1 for γ = 0 and
δγ = 0 otherwise.

In the special case of ACS processes, the lag-dependent cy-
cle frequencies are constant and coincident with the cycle frequen-
cies, only one term is present in the sum in (11) and, consequently,
the generalized cyclic autocorrelation functions are coincident with
the cyclic autocorrelation functions. Moreover, the autocorrela-
tion function Rxx∗(t,τ) depends uniformly on the parameter τ and
is uniformly continuous and the cyclic autocorrelation functions
Rxx∗(α,τ) are continuous in τ for each α ∈ A [3].

Two finite-power complex-valued continuous-time stochastic
process y(t) and x(t) are said jointly GACS in the wide sense if

Ryx(∗)(t,τ) , E
{

y(t + τ) x(∗)(t)
}

= ∑
α∈Bτ

Ryx(∗)(α,τ) e j2παt

= ∑
n∈I

yx(∗)

R(n)
yx(∗)(τ) e j2παn(τ)t . (12)

In (12), Bτ and Iyx(∗) are countable sets, superscript (∗) denotes an
optional complex conjugation, the lag-dependent cycle frequencies
αn(τ) depend on the choice made for (∗) and, in general, are not
coincident with those of x(t) or y(t), Ryx(∗)(α,τ) is the cyclic cross-
correlation function

Ryx(∗)(α,τ) , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
Ryx(∗)(t,τ) e− j2παt dt (13)

and R(n)
yx(∗)(τ) are the generalized cyclic cross-correlation functions

defined as

R(n)
yx(∗)(τ) ,


lim

T→∞

1
T

∫ t0+T/2

t0−T/2
Ryx(∗)(t,τ) e− j2παn(τ)t dt ,

τ ∈ T
(n)
yx(∗) −D(n)

0, τ ∈ R−T
(n)
yx(∗) −D(n)

(14)

R(n)
yx(∗)(τ0) , lim

τ→τ0
R(n)

yx(∗)(τ) τ0 ∈ D(n) (15)

where

T
(n)
yx(∗) , {τ ∈ R : αn(τ) is defined, αn(τ) 6= αm(τ) ∀m 6= n} (16)

D(n) , {τ ∈ R : αn(τ) = αm(τ) for some m 6= n} (17)

and the limit in (15) is made with τ ranging in T
(n)
yx(∗) −D(n). More-

over, by reasoning as for a single process, it can be shown that

Ryx(∗)(α,τ) = ∑
n∈I

yx(∗)

R(n)
yx(∗)(τ)δα−αn(τ) . (18)

3. FINITE DATA-RECORD BASED ESTIMATORS

In this section, for GACS processes, the cyclic cross-correlogram,
the cyclic correlogram, and the conjugate cyclic correlogram are
proposed as estimators of the cyclic cross-correlation function (13),
the cyclic autocorrelation function (3), and the conjugate cyclic au-
tocorrelation function

Rxx(α,τ) , lim
T→∞

1
T

∫ t0+T/2

t0−T/2
E{x(t + τ) x(t)} e− j2παt dt (19)

respectively. Moreover, their bias and variance are determined for
finite data-record length.

Definition 3.1 Given two stochastic processes y(t) and x(t), their
cyclic cross-correlogram is defined as

Ryx(∗)(α,τ; t0,T ) ,
∫

R
wT (t− t0) y(t + τ) x(∗)(t) e− j2παt dt (20)

where wT (t) is a unit-area data-window nonzero in (−T/2,T/2).
�

By specializing (20) for y(t)≡ x(t) and (∗) present, one obtains
the cyclic correlogram. Furthermore, for y(t)≡ x(t) and (∗) absent,
one obtains the conjugate cyclic correlogram.

Assumption 3.1 a) The stochastic processes y(t) and x(t) are sin-
gularly and jointly (second-order) GACS in the wide sense, that is,
for any choice of z1 and z2 in {x,x∗,y,y∗}

E{z1(t + τ1) z2(t + τ2)}

= ∑
n∈Iz1z2

R(n)
z1z2(τ1− τ2) e j2πα

(n)
z1 ,z2 (τ1−τ2)(t+τ2) (21)
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(uniformly almost-periodic in t in the sense of Besicovitch [1]).
b) The fourth-order cumulant cum{y(t +τ1),x(∗)(t +τ2),y∗(t +

τ3),x(∗)∗(t)} can be expressed as

cum{y(t + τ1),x(∗)(t + τ2),y∗(t + τ3),x(∗)∗(t)}

= ∑
n∈I4

C(n)
yx(∗)y∗x(∗)∗(τ1,τ2,τ3) e j2πβn(τ1,τ2,τ3)t . (22)

(uniformly almost-periodic in t in the sense of Besicovitch). �

Assumption 3.2 For any choice of z1 and z2 in {x,x∗,y,y∗} it re-
sults

∑
n∈Iz1 ,z2

∥∥∥R(n)
z1z2

∥∥∥
∞

< ∞ (23)

where ‖R‖∞ , esssupτ∈R |R(τ)| is the essential supremum of R(τ).
�

Assumption 3.3 It results that

∑
n∈I4

∥∥∥C(n)
yx(∗)y∗x(∗)∗

∥∥∥
∞

< ∞ . (24)

�

Assumption 3.4 The stochastic processes x(t) and y(t) have uni-
formly bounded fourth-order absolute moments. That is, for any
z ∈ {x,y} there exists a positive number M4 such that

E
{
|z(t)|4

}
≤ M4 < ∞ . (25)

�

Assumptions 3.1–3.4 regard the regularity of second and fourth-
order (joint) statistical functions of x(t) and y(t). Specifically, from
Assumption 3.1 it follows that the second-order (cross) moments
of x(t) and y(t) and their fourth-order joint cumulant are limits of
uniformly convergent sequences of trigonometric polynomials in t.
Moreover, Assumptions 3.2 and 3.3 mean that, for each Fourier se-
ries in (21) and (22), the nth coefficient has amplitude approaching
zero, as n → ∞, sufficiently fast to assure that the infinite sums in
(23) and (24) are finite. Finally, note that a sufficient condition as-
suring that Assumption 3.4 holds is that the fourth-order moment
functions of x(t) and y(t) are almost-periodic in t in the sense of
Besicovitch.

Assumption 3.5 wT (t) is a T -duration data-tapering window that
can be expressed as

wT (t) =
1
T

a
( t

T

)
(26)

with a(t)∈ L1(R)∩L∞(R),
∫
R a(t)dt = 1, and limT→∞ a(t/T ) = 1.

�

Assumption 3.5 is easily verified by taking a(t) with finite sup-
port [−1/2,1/2] and bounded (e.g., a(t) = rect(t)).

By taking the expected value of the cyclic cross-correlogram
(20) and using (12), the following result can be proved [12], where
the made assumptions allow to interchange the order of expectation,
integral, and sum operations.

Theorem 3.1 Expected Value of the Cyclic Cross-Correlogram. Let
y(t) and x(t) be wide-sense jointly GACS stochastic processes
with cross-correlation function (12). Under Assumptions 3.1a,

3.2, and 3.5, the expected value of the cyclic cross-correlogram
Ryx(∗)(α,τ; t0,T ) is given by

E
{

Ryx(∗)(α,τ; t0,T )
}

= ∑
n∈I

yx(∗)

R(n)
yx(∗)(τ)W 1

T
(α −αn(τ)) e− j2π[α−αn(τ)]t0 (27)

where W 1
T
( f ) is the Fourier transform of wT (t). �

By expressing the covariance of the second-order lag-product
y(t + τ) x(∗)(t) in terms of second-order cross-moments and a
fourth-order cumulant, the following result can be proved [12],
where the made assumptions allow to interchange the order of ex-
pectation, integral, and sum operations.

Theorem 3.2 Covariance of the Cyclic Cross-Correlogram. Let
y(t) and x(t) be zero-mean wide-sense jointly GACS stochas-
tic processes with cross-correlation function (12). Under As-
sumptions 3.1–3.5, the covariance of the cyclic cross-correlogram
Ryx(∗)(α,τ; t0,T ) is given by

cov
{

Ryx(∗)(α1,τ1; t1,T ),Ryx(∗)(α2,τ2; t2,T )
}

= T1 +T2 +T3

(28)
where

T1 , ∑
n′

∑
n′′

∫
R

R(n′)
yy∗ (τ1− τ2 + s)R(n′′)

x(∗)x(∗)∗(s)

e j2πα ′
n′ (τ1−τ2+s)(t2+τ2) e j2πα ′′

n′′ (s)t2 e− j2πα1·(t2+s) e j2πα2t2

1
T

raa∗
(
−[α ′

n′(τ1− τ2 + s)+α
′′
n′′(s)−α1 +α2]T ;γs,T

)
ds

(29)

T2 , ∑
n′′′

∑
n′ν

∫
R

R(n′′′)
yx(∗)∗(τ1 + s)R(n′ν )

x(∗)y∗
(s− τ2)

e j2πα ′′′
n′′′ (τ1+s)t2 e j2πα ′ν

n′ν (s−τ2)(t2+τ2) e− j2πα1·(t2+s) e j2πα2t2

1
T

raa∗
(
−[α ′′′

n′′′(τ1 + s)+α
′ν
n′ν (s− τ2)−α1 +α2]T ;γs,T

)
ds

(30)

T3 , ∑
n

∫
R
C(n)

yx(∗)y∗x(∗)∗(τ1 + s,s,τ2) e j2π[βn(τ1+s,s,τ2)−α1+α2]t2

e− j2πα1s 1
T

raa∗
(
−[βn(τ1 + s,s,τ2)−α1 +α2]T ;γs,T

)
ds

(31)

with γs,T , (t2− t1 + s)/T and

raa∗(β ;s) ,
∫

R
a(t + s)a∗(t) e− j2πβ t dt . (32)

In (29)–(31), for notational simplicity, α ′
n′(·) ≡ α

(n′)
yy∗ (·), α ′′

n′′(·) ≡
α

(n′′)
x(∗)x(∗)∗(·), α ′′′

n′′′(·)≡ α
(n′′′)
yx(∗)∗(·), and α ′ν

n′ν (·)≡ α
(n′ν )
x(∗)y∗

(·). �

In the special case of ACS processes, Theorems 3.1 and 3.2
reduce to the well known results of [2], [3], [5], [6].

4. MEAN-SQUARE CONSISTENCY

In this section, the cyclic cross-correlogram is shown to be a mean-
square consistent estimator of the cyclic cross-correlation function.

Assumption 4.1 For any choice of z1 and z2 in {x,x∗,y,y∗} it re-
sults

∑
n∈Iz1 ,z2

∫
R

∣∣∣R(n)
z1z2(s)

∣∣∣ ds < ∞ . (33)

�
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Assumption 4.2 ∀τ1,τ2 ∈ R it results

∑
n∈I4

∫
R

∣∣∣C(n)
yx(∗)y∗x(∗)∗(s+ τ1,s,τ2)

∣∣∣ ds < ∞ . (34)

�

Assumptions 4.1 and 4.2 are referred to as mixing conditions
and are generally satisfied if the involved stochastic processes have
finite or practically finite memory, i.e., if z1(t) and z2(t + s), are
asymptotically (s → ∞) independent.

By taking the limit of the expected value of the cyclic-cross
correlogram (27) as the data-record length T approaches infinite, the
following result can be proved [12], where the made assumptions
allow to interchange the order of limit and sum operations.

Theorem 4.1 Asymptotic Expected Value of the Cyclic Cross-
Correlogram. Let y(t) and x(t) be wide-sense jointly GACS
stochastic processes with cross-correlation function (12). Under
Assumptions 3.1a, 3.2, and 3.5, the asymptotic expected value of
the cyclic cross-correlogram Ryx(∗)(α,τ; t0,T ) is given by

lim
T→∞

E
{

Ryx(∗)(α,τ; t0,T )
}

= Ryx(∗)(α,τ) . (35)

�

Starting from Theorem 3.1, the following result can be proved
[12], where the made assumptions allow to interchange the order of
limit and sum operations.

Theorem 4.2 Asymptotic Covariance of the Cyclic Cross-
Correlogram. Let y(t) and x(t) be zero-mean wide-sense jointly
GACS stochastic processes with cross-correlation function (12).
Under Assumptions 3.1–3.5, 4.1, and 4.2, the asymptotic covari-
ance of the cyclic cross-correlogram Ryx(∗)(α,τ; t0,T ) is given
by

lim
T→∞

T cov
{

Ryx(∗)(α1,τ1; t1,T ),Ryx(∗)(α2,τ2; t2,T )
}

= T ′
1 +T ′

2 +T ′
3 (36)

where
T ′

1 , Ea ∑
n′

∑
n′′

∫
R

R(n′)
yy∗ (τ1− τ2 + s)R(n′′)

x(∗)x(∗)∗(s)

e j2πα ′
n′ (τ1−τ2+s)τ2 e− j2πα1s

δ[α ′
n′ (τ1−τ2+s)+α ′′

n′′ (s)−α1+α2] ds (37)

T ′
2 , Ea ∑

n′′′
∑
n′ν

∫
R

R(n′′′)
yx(∗)∗(τ1 + s)R(n′ν )

x(∗)y∗
(s− τ2)

e j2πα ′ν
n′ν (s−τ2)τ2 e− j2πα1s

δ[α ′′′
n′′′ (τ1+s)+α ′ν

n′ν (s−τ2)−α1+α2] ds (38)

T ′
3 , Ea ∑

n

∫
R

C(n)
yx(∗)y∗x(∗)∗(τ1 + s,s,τ2) e− j2πα1s

δ[βn(τ1+s,s,τ2)−α1+α2] ds (39)

with Ea ,
∫
R |a(u)|2 du. �

From Theorem 4.1 it follows that the cyclic cross-correlogram
(20), as a function of (α,τ) ∈ R×R, is an asymptotically unbiased
estimator of the cyclic cross-correlation function (13). Moreover,
from Theorem 4.2 it follows that its asymptotic variance is O(T−1),

where O is the “big oh” Landau symbol. Therefore, it is mean-
square consistent. Consequently, for ACS processes, we obtain as a
special case the well known results of [2], [3], [5], [6].

Note that, as it is well known, for (jointly) ACS processes, if
the estimation of the cyclic cross-correlation function is performed
at a fixed cycle frequency, say α0, then the not exact knowledge
of the value of α0 leads to a biased estimate. Moreover, an anal-
ogous result can be found for GACS processes if the estimation is
performed along a fixed lag-dependent cycle frequency curve α =
αn(τ). However, if the estimation of the cyclic cross-correlogram
Ryx(∗)(α,τ; t0,T ) as a function of the two variables (α,τ) is per-
formed, then, in the limit for T → ∞, the regions of the (α,τ) plane
where Ryx(∗)(α,τ; t0,T ) is significantly different from zero tend to
the support curves of the cyclic cross-correlation function, that is,
the curves α = αn(τ), n ∈ I (see (18)). Therefore, the unknown
lag-dependent cycle frequencies can potentially be estimated.

REFERENCES

[1] A. S. Besicovitch, Almost Periodic Functions. London: Cam-
bridge University Press, 1932 and New York: Dover Publica-
tions, Inc., 1954.

[2] A. V. Dandawaté and G. B. Giannakis, “Asymptotic theory
of mixed time averages and kth-order cyclic-moment and cu-
mulant statistics,” IEEE Transactions on Information Theory,
vol. 41, pp. 216-232, January 1995.

[3] D. Dehay and H. L. Hurd, “Representation and estimation
for peridically and almost periodically random processes,” in
Cyclostationarity in Communications and Signal Processing,
(W.A. Gardner, Ed.). IEEE Press, New York, 1994.

[4] W.A. Gardner and C.M. Spooner, “The cumulant theory
of cyclostationary time-series, Part I: Foundation,” IEEE
Trans. Signal Processing, vol. 42, pp. 3387-3408, December
1994.

[5] M. J. Genossar, H. Lev-Ari, and T. Kailath, “Consistent esti-
mation of the cyclic autocorrelation,” IEEE Transactions on
Signal Processing, vol. 42, pp. 595-603, March 1994.

[6] H. L. Hurd, “Correlation theory of almost periodically cor-
related processes,” Journal of Multivariate Analysis, vol. 31,
pp. 24-45, April 1991.

[7] L. Izzo and A. Napolitano, “The higher-order theory of gener-
alized almost-cyclostationary time-series,” IEEE Trans. Signal
Processing, vol. 46, pp. 2975-2989, November 1998.

[8] L. Izzo and A. Napolitano, “Linear time-variant transforma-
tions of generalized almost-cyclostationary signals, Part I:
Theory and method”, IEEE Transactions on Signal Process-
ing, vol. 50, pp. 2947-2961, December 2002.

[9] L. Izzo and A. Napolitano, “Linear time-variant transforma-
tions of generalized almost-cyclostationary signals, Part II:
Development and applications”, IEEE Transactions on Signal
Processing, vol. 50, pp. 2962-2975, December 2002.

[10] L. Izzo and A. Napolitano, “Sampling of generalized almost-
cyclostationary signals”, IEEE Transactions on Signal Pro-
cessing, vol. 51, pp. 1546-1556, June 2003.

[11] A. Napolitano, “Uncertainty in measurements on spectrally
correlated stochastic processes,” IEEE Transactions on Infor-
mation Theory, vol. 49, pp. 2172-2191, September 2003.

[12] A. Napolitano, “Asymptotic properties of statistical function
estimators for generalized almost-cyclostationary signals,” in
preparation.

[13] C. M. Spooner and W. A. Gardner, “The cumulant theory of
cyclostationary time-series, Part II: Development and aplica-
tions,” IEEE Trans. Signal Processing, vol. 42, pp. 3409-3429,
December 1994.

1444


	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Antonio Napolitano



