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ABSTRACT

In this paper, we propose a new approach for noise removal
on color image sequences, based on coupled spatial and tem-
poral anisotropic diffusions. This approach consists in smoo-
thing a sequence while keeping all discontinuities caused by
edges and moving objects. Our approach is based on a low
level detection of moving areas in a noisy sequence, in order
to associate temporal diffusion to a spatial diffusion process,
thus denoising the sequence more efficiently.

1. INTRODUCTION

Because they allow noise removal while preserving
global characteristics such as edges, Partial Differential
Equations-based denoising methods have become quite po-
pular in image processing over the last decade [1, 2, 3].
Unfortunately, most of these methods tend to focus on still
images, while only a few have been proposed for image se-
quences processing [4, 5], even less when it comes to color
sequences. Of course still image processing techniques could
be applied to perform “frame-by-frame” video processing,
but more efficient algorithms are needed to better exploit the
redundancy between successive frames. A simple idea for
PDE-based image sequence denoising would be to consider a
sequence as a 3D object, and apply Perona-Malik’s PDE [1]
in a 3D space, using a 3D gradient to detect discontinuities.
In this paper, we propose a color image sequence noise remo-
val method, which is based on this idea, except for one point :
in our method, temporal and spatial diffusions both use speci-
fic discontinuities detection. While the well-known gradient
norm is used to detect spatial discontinuities, we decided to
use a better, noise-robust, descriptor for temporal disconti-
nuities detection. To make this descriptor noise-robust, the
idea is to look for variations of statistical attributes of a local
neighborhood, instead of looking for variations of a single
pixel’s brightness. More details about this methods will be
given in this article, along with experimental results.

In section 2, we present the principles of PDE-based
grayscale and color image denoising. In section 3, we will
focus on image sequences, before introducing our coupled
spatial and temporal anisotropic diffusions method in section
4. Experimental results will be provided in section 5.

2. PDE-BASED NOISE REMOVAL

In this part, we propose a simple approach of noise re-
moval in image processing. This will allow us to introduce
the principles of isotropic and anisotropic diffusions for still
grayscale and color images.

2.1 Isotropic diffusion

Let I(x,y) = I be a still, grayscale, image, represented by
a function of Q C R? — R that associates to a pixel (x,y) €
Q its gray level I(x,y); Q is the support of the image. We
define Iy(x,y) = Iy as a noisy version of /(x,y). A well-known
solution to recover /(x,y) from Iy (x,y) is to perform Gaussian
convolution, which happens to be equivalent to the evolution
of the linear heat (or diffusion) equation (see [6]) :

) — gi(DI (x,p,1)) 1
{ I(x[?y,O) =1o(x,») v

Equation (1) defines the diffusion process of pixel (x,y)’s
brightness around neighboring pixels (x £ dx,y 4 dy), during
atime? (¢ € [0, T]) which value is directly linked to the Gaus-
sian kernel variance. This process, called isotropic diffusion,
is known to introduce blur, since it operates the same way in
all directions, smoothing both noise and edges.

2.2 Anisotropic diffusion

In 1990, Perona and Malik [1] introduce anisotropic dif-
fusion, a nonlinear process in which smoothing is only per-
formed in low gradient areas (homogeneous areas), thus al-
lowing noise blurring with edge preservation :

{ 20) — div(e(|DI(x )OI 00) (o)
I(x% 0) = 10(x7y)

with ¢(.) a decreasing positive function, called diffusion
fonction”, which allows to define the strength of the smoo-
thing process for each gradient norm value. (2) can also be
written as follows [7] :

or _ o/ (1))
{ ar = P (IBIDIgg + =g Inn (3)

I(x,y,O) = [0(x>y)

with [z ¢ and Iy the second-order directional derivatives res-
pectively along the gradient direction and along its orthogo-
nal direction. This equation actually is Perona-Malik’s PDE

(2), with ¢(]|01]]) = %. Deriche-Faugeras’ formulation

(3) allows to define conditions on function ®(.) :
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Equation (4) means that smoothing is performed in all
directions (isotropic diffusion) for low gradient areas, while
it is only performed along the gradient’s orthogonal direction
(anisotropic diffusion) for high gradient areas.

2.3 Extension to color images

In the case of color images, we define a vectorial function
I(x,y) : Q C R* — R? which associates to pixel (x,y) € Q its
3 component values in the Red-Green-Blue color space. To
perform anisotropic diffusion on color images, we can use
DiZenzo’s gradient norm [8], which is based on differential
geometry of surfaces. It consists in defining a multispectral
tensor, associated to a vector field, to look for local variations
in the image. The highest eigenvalue of the multispectral ten-
sor then corresponds to the square norm of the gradient.

3. IMAGE SEQUENCE DENOISING
3.1 Introduction

Video restoration being a more recent research area than
still image restoration, it is no surprise that most papers dea-
ling with PDE-based noise removal tend to focus on still
image processing. Of course we could use still image de-
noising techniques to perform frame-per-frame video res-
toration. But in this case redundancies between successive
frames wouldn’t be exploited, and those provide very use-
ful information for noise removal. In 1984, Dubois and Sabri
[9] introduce a method in which static scenes of a video are
identified. Noise reduction then consists in performing tem-
poral averaging on those scenes, while dynamic scenes are
kept unfiltered. Identifying static/dynamic scenes to perform
noise removal happens to be very efficient. Kornprobst suc-
cessfully adapted this idea for PDE-based restoration [5].

3.2 A study of 3D diffusion

Let I(x,y,z) = I be a function of Q C R? — R that as-
sociates to a pixel (x,y) localized in frame z its gray level
I(x,y,z). Iy(x,y,z) being a noisy version of I(x,y,z), a basic
idea to recover I(x,y,z) would be to extend Perona-Malik’s
PDE (2) to 3D space :
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A=) = div(e(|DI(xyz, )OI p20) (s
I(X,)GZ’O) :[()(.X7y,2)

Figure 1 shows results obtained on noisy “Foreman” se-
quence by this 3D anisotropic diffusion process. Although
it seems to give satisfying results, we can find a few draw-
backs to this method. Considering a video as a 3D object ac-
tually consists in considering the video’s temporal coordinate
as a third spatial coordinate : in this case, the video’s voxels
would be evolving in a homogeneous and isotropic medium.
This, of course, is a wrong assumption. Taking a closer look
at Figure 1.b, we can notice noise residuals on a few areas :

(b) Restored sequence

(a) Noisy seque.ncc-:

F1G. 1 — 3D diffusion of a noisy sequence (frame n°82)

although a 3D gradient norm allows to detect discontinuities,
its value won’t give any information about either spatial or
temporal variations. This means homogeneous areas of one
frame won’t be blurred if pixels of these areas present high
temporal variations on several frames.

In the next section, we are presenting a denoising method
which is based on this 3D anisotropic diffusion process, ex-
cept in our method spatial and temporal discontinuities have
their own detector.

4. COUPLED SPATIAL AND TEMPORAL
DIFFUSIONS

In this section, we consider a color image sequence.
I(x,y,z) : Q C R?® — R? is a function which associates to
pixel (x,y,z) its component values in the RGB color space.
Our method consists in performing simultaneously two non-
linear 2D and 1D filtering operations : spatial and temporal
anisotropic diffusions. Such process should independently
define the diffusion of pixel (x,y,z)’s chromatic RGB spec-
trum around neighboring pixels (x + dx,y + dy) on frame z,
as well as its diffusion around neighboring pixels z+ 9z on
spatial localisation (x,y). In both cases, diffusion speed is
determinated by medium-specific (space or time) disconti-
nuities detectors. Spatial discontinuities are measured via Di-
Zenzo’s color gradient norm, while we propose our own me-
thod to detect temporal discontinuities. This method consists
in studying a neighborhood for each pixel and comparing
neighborhood statistics to an estimated model. We will ex-
plain how this method turns out to be more noise-robust and
useful than a simple, easily perturbable, 1D gradient norm.

4.1 Diffusion equation

To differentiate spatial diffusion from temporal diffusion,
we write our PDE as follows :

a7

Ox
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with ¢,(.) the spatial diffusion function, ¢(.) the temporal
diffusion function, || O7 ||, the vectorial norm representing

spatial discontinuities, and || 07 ||, the vectorial norm repre-
senting temporal discontinuities.
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As we said already, || 07 ||, is calculated using DiZenzo’s

gradient norm. The calculation of || 07 |, is explained in next
paragraph.

4.2 Temporal discontinuities detection

To detect temporal discontinuities in a noisy sequence,
the easiest solution would be to compute a 1D gradient calcu-
lated on coordinate z for each pixel of this sequence. Unfor-
tunately, experimental results show that the high noise sensi-
bility of this method makes it unusable.

Suppose now that instead of studying the temporal evolu-
tion of a single pixel 1, we focus on a whole set of pixels (a.e.
a M x M neighborhood, as shown on Figure 2), and decide to
study statistical attributes of this set instead of studying raw
RGB pixel values.

D(x,y,2)

(a) Single-pixel approach  (b) Cluster approach

[(xy,2)

F1G. 2 — Neighborhood study on one z frame

In our cluster approach, statistical attributes of pixel
I(x,y,z) and surrounding neighborhood are defined in vec-
torial function D(x,y,z) :

Dl (x7y7 Z)
- D2 (xvyaz)
D(xvyaz) = : (7)
DL (x7yvz)
In practice, statistical attributes Dy, Dy, ..., Dy could be

spatial means and variances, median, mimimum or maxi-
mum values, etc.

Assuming the presence of motion between two consecu-
tive frames z and z + dz produces brightness intensity varia-
tions on pixels of a defined array, statistical attributes of this
array may also be subject to variations. This way, both single-
pixel value and array statistics-based approaches can be used
to detect temporal discontinuities.

Suppose we are working on a noisy sequence, this
noise being characterized by a statistical model. In most
cases, including natural scenes, this noise model in unlikely
to change during sequence-time. This actually makes our
statistics-based detection method noise-robust, at least sta-
tionary noise-robust. We can find several motion detection
methods based on cluster approaches in literature [10, 11].
Ours operates this way :

— on frame z, statistics vector D is calculated for each
pixel 7 and surrounding neighborhood,

— statistical attributes of a same neighborhood are also
calculated on surrounding frames z+ 1, z+ 2, etc. to
obtain temporal means and variances/covariances for

attributes Dy, Dy, ..., Dy,

— finally, for each pixel 1, a Mahalanobis [12] distance

between vector D on frame z and its parametric model
estimated on neighboring frames is calculated, and

corresponds to || O ||t2

Let P be the number of frames used to estimate a parame-
tric model for vector D (P is an even value). For each pixel
(x,), we define :
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The Mahalanobis distance between vector D and its pa-
rametric model is defined by :

2
HIZII
t

= (D—pp)' C5'.(D—Hp) (11)

with Uz and Cj respectively the mean and covariance
matrices of vector D’s parametric model.

5. EXPERIMENTAL RESULTS
5.1 Motion detection

Figure 3 shows temporal discontinuities detection results
obtained on noisy “Claire” color sequence (additive gaus-
sian noise) using a 1D gradient (Fig 3.b) and our statistics-
based method, using P = 4 and M = 3 as neighborhood pa-
rameters (Fig 3.c). In this example, we used spatial means
(D) and variances (D) of brightness values Y (x,y,z) (Y =
0.299R 4 0.587V + 0.114B) to define statistics vector D. As
we can see, noise perturbates the temporal gradient calcula-
tion and makes it almost unusable for detection, but our me-
thods seems to present more robustness : Fig 3.c only shows
actual motion elements, while noise hasn’t been detected as
such.

(c) our method

(a) Noisy sequence  (b) 1D gradient

F1G. 3 — Motion detection on a noisy sequence (frame n°16)
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5.2 Noise removal

In this part, we present experimental results of our noise
removal method. Temporal discontinuities detection statisti-
cal attributes and parameters remain the same as in 5.1. We
decided to use the following diffusion function :

¢(x) = () = (1+(x/k)P)e %), je st} (12)

The purpose of using this diffusion function instead of
Perona-Malik’s is to focus on noise removal properties only
(Perona-Malik’s function performs both noise removal and
edge enhancement).

Figures 4.a and 4.b show results obtained on noisy
”Claire” color sequence, using diffusion parameters k; = 2.5,
k; = 0.25, and ¢ = 15. We can notice serious enhancement
between Fig 4.a and Fig 4.b. This enhancement is confirmed
by PSNR values provided on Fig 4.c, which increase from
about 27dB to about 38dB.

(a) Noisy sequence (b) Restored sequence

"Claire" sequence restoration

40

38

36 — Noisy sequence
— Restored sequence

©w
r

PSNR (dB)
N

28

26
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Frame number

(c) PSNR per frame

F1G. 4 — Restoration of noisy ’Claire” sequence

6. CONCLUSION

In this paper, we’ve presented a noise removal method for
color image sequences, based on coupled spatial and tempo-
ral anisotropic diffusions. To make it more efficient, we’ve
also introduced a new, noise-robust, temporal discontinuities
detection technique. The main advantages of our method is
that it will work for most types of stationary noise (besides
additive Gaussian noise, it also gave good results on com-
pression noise), and the fact that PDE formalism allows to
provide fast yet stable algorithms. Promising experimental

results have been achieved and shown on this paper, and open
new perspectives in PDE-based image sequence processing.
Future works will include automatic diffusion/detection pa-
rameters estimation, that would lead to an unsupervised res-
toration algorithm.

REFERENCES

[1] P. Perona and J. Malik, “Scale-space and edge detec-
tion using anisotropic diffusion,” IEEFE transactions on
Pattern Analysis and Machine Intelligence, vol. 12, no.
7, pp. 629-639, 1990.

[2] L. Alvarez, P-L. Lions, and J-M. Morel, “Image selec-
tive smoothing and edge detection by nonlinear diffu-
sion. ii,” SIAM Journal on Numerical Analysis, vol. 29,
no. 3, pp. 845-866, 1992.

[3] J. Weickert, Anisotropic Diffusion in Image Processing,
Ph.D. thesis, Dept. of Mathematics, University of Kai-
serslautern, Germany, January 1996.

[4] L. Moisan, “A depth-compatible multiscale analysis
of movies,” Tech. Rep. CMLA No. 9803, Centre de
Mathématiques et de Leurs Applications, Ecole Nor-
male Supérieure de Cachan, 1998.

[5] P. Kornprobst, R. Deriche, and G. Aubert, “A PDE
based coupled method for image restoration and mo-
tion segmentation,” in Proceedings of the 5th Euro-
pean Conference on Computer Vision, Freiburg, Ger-
many, June 1998, vol. I, pp. 548-562.

[6] J.J. Koenderink, “The structure of images,” Biological
Cybernetics, vol. 50, no. 5, pp. 363-370, 1984.

[7]1 R. Deriche and O. Faugeras, “Les EDP en Traitement
des Images et Vision par Ordinateur,” Traitement du
Signal, vol. 13, no. 6, 1996.

[8] S. Di Zenzo, “Note : A note on the gradient of a multi-
image,” Computer Vision, Graphics, and Image Pro-
cessing, vol. 33, no. 1, pp. 116—125, January 1986.

[9] E. Dubois and S. Sabri, “Noise reduction in image se-
quences using motion compensated temporal filtering,”

IEEE transactions on communications, vol. 32, no. 7,
pp. 826831, July 1984.

[10] H.J. Eghbali, “K-s test for detecting changes from land-
sat imagery data,” /[EEE Transactions on Systems, Man,
and Cybernetics, vol. 9, no. 1, pp. 17-23, 1979.

[11] Y.Z. Hsu, H.H. Nagel, and G. Rekers, “New likelihood
test methods for change detection in image sequences,”

Computer Vision, Graphics, and Image Processing, vol.
26, pp. 73-106, 1984.

[12] P.C. Mahalanobis, “On the generalized distance in
statistics,” Proceedings of the National Institute of
Sciences of India, vol. 2, no. 1, pp. 49-55, 1936.

484



	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation  ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO  ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling  ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Pascal Bourdon
	Bertrand Augereau
	Christian Olivier
	Christian Chatellier



