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Abstract— The design of a two dimensional (2D) quadrantally symmet-
ric FIR filter with peak constrained magnitude response is considered. We
further considered the design specification without explicitly specifying
the transition band. A novel iterative algorithm without transition
band specification is proposed to design FIR filters with various design
constraints. The eigenfilter formulation further allows the proposed
algorithm to incorporate time domain constraints simultaneously. Various
design examples are presented to illustrate the versatility of the proposed
2D filter design method. Although we have not proven the convergence
of the proposed algorithm, it is found to converge efficiently in all the
simulations.

I. INTRODUCTION

The design of two dimensional (2D) FIR digital filters is not a
trivial task because the very nature of multidimensional processing
introduces special considerations and cross-dimensional dependencies
that do not exist in the one dimensional (1D) cases [4]. Previous
work in the design of 2D FIR digital filters can be roughly clas-
sified into two categories, (i) indirect and (ii) direct methods. The
indirect design methods obtain the 2D digital filters through 1D to
2D spectral transformations of pre-designed 1D digital filters. The
McClellan transformation [7], [8] is one of the most popular 1D
to 2D spectral transformation. Such design method has very low
computational complexity. However, the obtained 2D digital filters are
not guaranteed to inherit the spectral property of the 1D prototypes.
As a result, it is not suitable to be used to design 2D digital filters
with tight spectral specifications.

The direct approach designs the 2D digital filter by optimizing the
filter coefficients to approximate a desired spectral response. Various
approximation criteria have been considered in literature. The Lo and
Lo are the most popular approximation criteria used in 2D digital
filter design. It should be noted that the Remez exchange method,
which has been used widely in 1D L., optimal filter design, cannot
be generalized to 2D Lo filter design problem. This is because the
Remez exchange algorithm is based on the alternation theorem, which
is not available in the 2D case [5]. Instead, most of the 2D Lo
optimal filter design methods found in the literature are formulated
as an iterative reweighted least squares optimization problem [11].

The objective of the Lo, optimal filter design problem is to
minimize the peak of the approximation error. However, the Lo
approximation error is assumed to be irrelevant. Similarly, the Lo
filter design criterion is based on the assumption that the size of
the peak errors can be ignored. Both the Lo and Lo criteria are
important. Therefore, Adams argued that the filter design methods
that only minimize either the Lo error or L., error alone are
inefficient [12]. In a very different perspective, Adams [12] proposed
the peak constrained least squares (PCLS) design criterion, which
minimizes the Lo filter design error subject to constraints on the Lo
filter design error. Such design criterion is shown to be effective by
Adams [12], because the peak errors of the Lo optimal 1D filter can
be significantly reduced with only a slight increase in the squares
error. Similarly, the squares error of the Lo, optimal 1D filter can be
significantly reduced with only a slight increase in the peak error of
the Lo optimal 1D filter.

The same properties are also observed in the design of 2D digital
filters. In the literature, the only design method for designing PCLS
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2D FIR digital filters is given in [9]. However, the design method
in [9] exhibits several deficits. First, it applies Lagrange multiplier
method iteratively to solve a constrained optimization problem, which
involves solving the normal equations by matrix inversion. It is
well known that the matrix inversion is numerically unstable and
inefficient, especially when the matrix size is large. Second, the
algorithm based on the single exchange procedure is computationally
inefficient when compared to that of the multiple exchange procedure
[5]. Furthermore, the iterative method of [9] may easily be trapped
in local optimal solution in the case of multiband filter design. This
problem is explained in [14], which showed that the iteration method
of [13] is trapped by local optimal solution in the case of bandpass
filter design. Note that the iterative method in [9] for 2D filter design
is a direct extension from the iterative method of [13] for 1D filter
design. A method to remedy this deficit is proposed in [14] for 1D
filter design. However, it may not be effective for 2D filter design
problems because of the possible existence of multiple local minimal
saddle points in the optimization problems for 2D filter designs. As
a result, it is a rare case to be able to obtain a good 2D digital filter
with multiband spectral support using the extension of [14].

It is the purpose of this paper, which proposes a novel iterative al-
gorithm for designing 2D peak constrained digital filters. In addition,
the proposed algorithm is the first algorithm in the literature that does
not require the specification of transition band bandedges, and thus
avoids problems related to the ambiguous transition band definition
for 2D digital filters. The proposed algorithm is similar to the multiple
exchange algorithm which is known to be computational efficient
when compared to the design method based on the single exchange
algorithm [9]. The proposed design method can be used to design
multiband filters and high performance multiband filters are obtained
in our simulations presented in the later part of the paper. Although
the proposed algorithm is similar to the Remez exchange algorithm 1,
there are fundamental differences between the two algorithms. First,
the proposed design algorithm can be used to solve peak constrained
filter design problems which includes the Lo, design problem as a
special case. However, the Remez exchange algorithm can only be
used to solve the Lo filter design problem. Second, the number of
extremals involved in each iteration varies, whereas in the case of the
Remez exchange algorithm is maintained to has a constant number
of extremals involved in each exchange. After all, the alternation
theorem does not exists for 2D L., optimization problem. As a result,
it is fair to say that the proposed algorithm is not a variants of the
Remez exchange algorithm for 2D filter design problems.

II. 2D QUADRANTALLY SYMMETRIC EIGENFILTER DESIGN

The amplitude response of a causal 2D filter with even symmetric
and even order (N1, N2) is given by [2]

My Mo

Awr,ws) = Z Z a(ni,n2) cos(niwr) cos(naws),

n1=0no=0

(M

where

h(Ml, Mg) for ny =Nz = O,
a(nl,ng) = 2h(M1 —77,1,M2 —ng) fOl‘ ni =0 or n9 IO7
4h(My — n1, M2 — n2)  otherwise.
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Define

a = [ a(0,0) a(0,1) a(0, M) ,
a(1,0) a(1,1) a(l,Mz) , -,
a(M1,0) a(M,1) a(My,M2) 1, (2)
clwi,w2) = [ 1 cos(w2) cos(Maws)
cos(w1) cos(w1) cos(Mawz) -+,
cos(Miw1) cos(Miwy ) cos(Maws) |,

where the superscript ¢ denotes matrix transpose. The amplitude re-
sponse in (1) can be simplified by using vector-matrix representation
as

A(wr,ws) = a’c(wr, w2). 3)

Similar expressions can be written for odd order and odd symmetric
filters [2].

The 2D filter design problem is to find a set of impulse responses
h(ni,n2) such that the associated amplitude response A(wi,w2)
approximates a given frequency response D(wi,w2). It is the same
as finding the coefficient a(ni,n2) in (2) to satisfy the given
approximation problem. The approximation error in the frequency
domain of the filter design problem is given by [1]

D(wl,wQ)
D(w10,w20)
D(wi,w2) 4

t
= — ) =/ — . (4
Dlwno. 2O)a c(wio,w20) — a’c(w,wz). (4)

e(wl,wg) A(wlo,QJgo) - A(wl,wg)

Various optimization criterion can be applied to the problem. The
method in [1] proposed to minimize the weighted Lo error given by

// W(wl,wg)[e(wl,wg)]deldwg,
R
= a'Pa, (5)

€Ly

where W (w1, w2) is a nonnegative weighting function that controls
the relative importance of the spectral response in different frequen-
cies and R is the spectral domain of concern. The matrix P is a real,
symmetric and positive definite matrix given by

// W (w1, ws)( D(wi,w2)
D(w10,w20)

(.u'l,LUg)

————~c(w10,w20) — c(w1,w2))

mc(wlo,wgo) — C(w1,WQ))tdw1d(U2. (6)

Obviously, €7, is minimized when a = 0. To avoid this trivial
solution, the above optimization problem is constrained at the ref-
erence frequency (wio,w20) so that the obtained filter approximates
the design specification D (w10, w20) in the passband. As a result, the
filter design problem is formulated as the following,

a'c(wi0, wao)c' (w10, wao)a

= D(wlo,wgo). (7)

.t
min a Pa
a

subject to

The dc response, i.e. (wio0,w20) = (0,0), is commonly chosen for
D(w10,w20) in lowpass filter design, and the value 1 is usually used
for D(w10,w20). By Rayleigh Principle, the eigenvector corresponds
to the minimum eigenvalue of the matrix P in (7) is the solution
vector for the filter design problem. Such filter is known as the
eigenfilter in [1], [2], [3].

III. A NOVEL ITERATIVE 2D EIGENFILTER DESIGN METHOD

An unconstrained 2D eigenfilter ar,, with specification as shown in
Fig.1(a) and W (w1, w2) = 1 V(w1,w2) is designed using the method
of [2]. The passband and stopband error, €., (w1, w2) in (4) are shown
in Fig.1(b). A peak constrained filter apc, which the ripples fit within

a predefined upper and lower bound (éy and d1), can be obtained
by adding a second filter Aay, to ar,, such that Aay, is designed to
reduce the peak error of the unconstrained eigenfilter, i.e.

apc = ar, + Aay,. (8)

The specification defined in Fig.1(a) is an example used to simplify
our discussions. The proposed design method can be used to design
2D eigenfilters with other design specifications, which is demon-
strated by the design examples in the later part of the paper. To
satisfy (8), Aaj should be designed in a way that the peak error
of the unconstrained eigenfilter decreases to fit within the upper and
lower ripple bound (67 and dz,). In other words, the spectral response
of Aay should be designed to has spectral peaks at v (i,7) with
magnitude A,, (¢, §), and zero response at all other spectral locations.
Note that A, (Z,7) at (w;,w;) are observed from Fig.1(d) and are
defined as

D(wl,wQ)

— 7= A (w1, w2),
D(w10,w20) k(wr,we)

vk (1, 7) = ex(wis, wo;) = Ap (w10, ws0) —

if 6k(w11,OJ27) > 0y
and (4)1170.127) € Py
if ek(wu,ng) <L
and (w1i,w2;) € Py

[ou — ex(wii, w2;)]

Ao, (3,4) = ©

[en(w1i, wa5) — OL]

respectively. Further note that, &, is defined as the collection of
all extremal frequencies of ex(wi,w2) such that e (w1i,wa;) (@ =
1,2,3,...and j = 1,2,3,...) are not bounded by dy; and dr,. To sim-
plify the 2D peak search routine in the implementation of the proposed
algorithm, we will search extremal frequencies (w1i,w2;) in a 2D
plane such that all ek(wlifl,ng), Ek)(wu,QJgjfl), Ek(w1i+1,ng)
and ey (w1i,waj+1) are smaller than or bigger than e(w1i,w2;) =
vk (i, §) for maximum or minimum extermals respectively.

This paper proposes to use eigenfilter method, which is an efficient
filter design method, to design Aay. The squares error function (Aey)
for the eigenfilter design problem can be written as,

Aer = Aa,'QrAay, (10)
where
Avk(l,])
. = — — ~ C(W1io0, W — c(wis, wa;
(A Z {D(wlo,u&o) (w10, w20) (wii, waj)
(i,5) S.t
(w14,w25) € Py,
A”k(%]) t
. |:D(W10,L4J20)C(w10’w20) C(wmng)
b3 clomem)elonen) i
(i,5) S.t
(w1,025)E Py,
with (wi0,w20) = argmax(u,; w,, ){Ak(%J)}, D(wio,wo) =

max{Ax(i,7)} and Aay is half of the filter coefficients defined sim-
ilar to (2). By Rayleigh principle [3], the vector Aay, that minimizes
Agey, is given by the eigenvector of the matrix Qg corresponding to
the smallest eigenvalue. Fig.1(c) shows the actual spectral response
of Aay obtained by eigenfilter design method with the discussed
design specification defined in (9) and shown in Fig.1(d).

However, it is almost impossible to design a filter with several
spectral peaks and a large region of zero response. Fig.1(c) shows
the actual spectral response of Aay obtained by eigenfilter design
method with the design specification that we have just discussed.
Obviously, adding Aa; in Fig.1(c) to ar, will not reduce all the
peak errors in Fig.1(b) and will result in a apc that satisfies the
given bound. New peaks may appear because the eigenfilter design
method designs Aay to minimize the difference between the actual
spectral response and the desired spectral response. In addition, it
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is difficult to design a filter with several spectral peaks and a large
region of zero response. To remedy this problem, we formulated the
design problem of Aay, in a recursive way such that we will design
a new Aay to compensate for any discrepancy until apc satisfies
the design specification. The proposed method can be summarized as
follows.

1) Obtain ap by designing ar.,, with the design specifications N,
(wie,w2e), 0y and Oz using eigenfilter. Set iteration index k =
1.

2) Search for all the extremal frequencies (w1, w2;) and calculate
Ay, (%,) by using (9).

3) Set Aay equals to the eigenvector of the smallest eigenvalue
of Q in (11).

4) Update the filter coefficient (i.e. ar) by ar = Aay +ap—_1).

5) Stop when all the peaks are bounded within the upper and lower
bound (6y and 1), when k > 100; otherwise set k = k + 1
and go to Step 2.

Although we have not proven the convergence of the proposed
algorithm, it is found to converge efficiently for the large number of
design examples considered. Indeed, the algorithm converges rapidly
for all the design examples, and so far we have not encountered a
non-convergent design.

IV. INTERPRETATIONS AND EXTENSIONS

As discussed in the Introduction, the proposed algorithm looks
like that it is a variant of the Remez exchange algorithm 1 in [10]
at first glance. However, there are fundamental differences between
the two algorithms. For simplicity, we compared the Harris and
Mersereau (HM) algorithm [6], a variant of the Remez exchange
algorithm for 2D filter design, with the proposed algorithm. First, the
number of extermal frequencies involved in the proposed algorithm
varies from one iteration loop to another, whereas the number of
extermal frequencies involved in HM algorithm are maintained to be
the same throughout the algorithm. Furthermore, due to the lack of 2D
alternation theorem [5], the extermal frequencies may be perturbated
in HM algorithm when the algorithm does not converge. However, no
perturbation of the extermal frequencies is required for the proposed
algorithm.

Second, there does not exist a minimum dyy and Jdr, such that the
proposed algorithm fails to converge. When 6y and 5 are small,
the transition band between the passband and the stopband of the
filter obtained by the proposed algorithm simply becomes wider. In
contrast, the transition band bandwidth of the filter obtained by HM
algorithm is fixed and is equal to a predefined value. As a result,
there exists an optimal dy and dr,, beyond which, the HM algorithm
does not converge. Instead, the proposed algorithm offers a design
tradeoff between dy and dr with the transition band bandwidth.
Similar design tradeoff for 1D digital filter designs is considered in
[13], [15], and is shown to be an important design feature.

In addition, the transition band in 2D filters is ill-defined. Tradi-
tionally, the transition band bandwidth definition used in 2D filters is
a direct extension of that defined for 1D filters, which is applicable
for circular symmetric 2D filters only. It is inappropriate to use the
same definition for 2D filter designs with other spectral support. As
an example, when it is used for a 2D filter with square shaped spectral
support to achieve constant transition band bandwidth, the actual
transition band bandwidth of the corner frequency of the 2D filter
will be wider than that of the horizontal and vertical frequencies. As
a result, it will be inappropriate to design optimal 2D filter with such
transition band specifications. Further note that there does not exist a
simple formulation that can be used to determine the transition band
bandwidth of an optimal 2D filter with a given dy and 0. As a

result, it will be difficult, if not impossible to design 2D filters with
optimal transition band bandedges with a given dy and &1, using the
HM algorithm.

In addition, the proposed algorithm does not preclude the specifi-
cation of a transition band. If both the transition band bandedges,
0y and &r are specified simultaneously, it is possible that no
solution exists. This is because the transition band cannot be arbitrary
sharp. Note that in here a distinction is being made between the
cut-off frequency (wic,w2.) and the bandedges frequencies (e.g.
(wip,wa2p) < (Wic,w2e) < (wis,w2s) in lowpass 2D digital filter
design). This is similar to that of the 1D digital filter discussed in
[15].

Finally, note that the proposed algorithm can be initialized with
different filters which will affect the convergence of the algorithm.
We further propose to initialize the algorithm with the filter obtained
by the 2D eigenfilter design method proposed in [1], such that there
is no ambiguity about the initial filter used in the iterative procedure.

V. DESIGN EXAMPLES

All the filters presented in this section are designed with the
weighting factor W (w1,w2) set to 1 for all w. In practice, the
weighting factor can be set to different values to control the relative
importance of the spectral response for the filter under concern.

A. Example 1 - Peak Constrained 2D Quadrantally Symmetric Cir-
cular Eigenfilter

An order (N1, N2) = (16,16) linear phase 2D circular lowpass
filter was designed using the proposed algorithm. The design spec-
ification is shown in Fig.2(a) , where the passband is circularly
shaped in the (wi,w2) plane with the radius equal to 0.4w. The
upper and lower bound constraints on the amplitude response are
equal to 0y (w1,w2) = —dr(wi,w2) = 0.02 = —33.9794dB for
(w1,w2) € ([0,7],[0,7]). That is the peak ripple sizes for both
passband and stopband are the same and are equal to —33.9794dB.
The converged magnitude response is shown in Figs.2(d) and (e) with
different view angles. Compared to the initial magnitude response
as shown in Figs.2(b) and (c), we can conclude that the proposed
method provides an efficient method for designing peak constrained
eigenfilters.

B. Example 2 - Peak Constrained 2D Diamond Shaped Multiband
Eigenfilter

An order (N1, N2) = (22,22) linear phase 2D diamond shaped
multiple passband filter was designed using the proposed algo-
rithm. The design specification is shown in Fig.3(a). The upper
and lower bound constraints on the amplitude response are equal
to ou (w1, w2) = —dr(wi,w2) = 0.01 = —40dB for (wi,w2) €
([0, 7], [0, 7]). The initial and the converged magnitude responses are
shown in Fig.3(b) and Fig.3(c) respectively. The magnitude response
at w; = 0 is shown in Fig.3(d). High performance multiple passband
filter is observed from Fig.3(c) and Fig.3(d), which demonstrate the
effectiveness of designing multiple passband filters with the proposed
design method.

VI. CONCLUSIONS

We have proposed a constrained two dimensional quadrantally
symmetric eigenfilter design algorithm, which can be used to design
peak constrained two dimensional FIR filters. The algorithm has also
exploited the design of two dimensional FIR filters without explicit
specification of the transition bands. The proposed algorithm can be
used to design 2D filters with optimal transition band bandwidth
from the design specification. Various design examples have been
presented to demonstrate the performance of the proposed design
method. Although we have not proven the convergence of the
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proposed algorithm in the paper, the algorithm is found to converge
efficiently for the large amount of design examples considered. We
have not encountered a non-convergent design using the proposed
design method. Indeed, the algorithm converges rapidly for all the
design examples presented in the paper.
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