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ABSTRACT 
This paper proposes a new method for designing two-

channel causal stable IIR perfect reconstruction (PR) filter 
banks (FBs) with prescribed peak error and K-regularity 
constraints. It is based on the model reduction of the FIR 
functions in the structural PR filter banks of Phoong et al by a 
new model reduction technique, which was a modification of 
the technique previously proposed by Brandenstein et al. The 
proposed model reduction method retains the denominator of 
the conventional techniques and formulates the optimal design 
of the numerator as a semi-definite programming problem.   
Therefore, linear and convex quadratic inequalities such as peak 
error and K-regularity constraints for the IIR filters can be 
imposed and solved optimally.  Design examples show that the 
proposed method gives better performance, more flexibility in 
incorporating a wide variety of constraints, and lower design 
complexity than conventional method.   

I.   INTRODUCTION 
Perfect reconstruction (PR) multirate filter banks (FBs) 

have important applications in signal analysis, coding and the 
design of wavelet bases. An efficient structure of two-channel 
FIR/IIR FBs, which structurally satisfy the PR condition, was 
the structural PR FB proposed by Phoong et al [1]. The FBs of 
this structure are parameterized by two functions )(zβ  and 

)(zα  and some delay parameters. To meet different design 
specifications, these two functions can be chosen as arbitrary 
functions such as low-delay FIR [2] or IIR filters [3,4], while 
satisfying the PR condition. Because of these important results, 
the design of PR FBs can be simplified to general filter design 
problems. Moreover, wavelet bases can be constructed from 
these FBs by imposing additional K-regularity condition (which 
is equivalent to a certain number of zeros respectively at πω =  
and 0=ω  for the analysis lowpass and highpass filters) 
[1,2,5,6].  

The design of causal stable IIR FBs using the structure in 
[1] was also studied by one of the author together with Mao et al 
[7] based on model reduction. In this approach, two FIR 
functions )(zβ  and )(zα  are first designed to meet the desired 
frequency characteristic. Model reduction [8] is then applied to 
these FIR functions to obtain an IIR FB having a similar 
characteristic as the original FIR FB. The advantages of this 
model reduction approach are its simple design procedure and 
the ability to preserve properties such as frequency 
characteristics, passband linear-phase, causality and stability. 
However, it does not allow precise control of the frequency 
response and other constraints, such as prescribed K-regularity 
or peak ripple constraints, to be imposed. One would also expect 
the performance of the model-reduced FB to be sub-optimal and 
it can be further improved. In addition, the problem of imposing 
a prescribed K-regularity to the IIR FB was not discussed. 

In this paper, we propose a new design method for two-
channel IIR structurally PR FBs using a new constrained model 
reduction technique, which is a modification of the model 
reduction method proposed in [9]. Important advantages of the 
method in [9] are that the numerator and denominator can be 
determined separately and the stability of the model-reduced 
filter is guaranteed. More precisely, the denominator is first 
determined, followed by the numerator. This property allows us 
to incorporate linear and convex quadratic constraints and shape 

the frequency response of the final IIR filter by designing the 
numerator using semi-definite programming (SDP), given the 
denominator at the first stage. For illustrative purpose, we 
mainly focus on the incorporation of peak stopband error and 
prescribed K-regularity constraints to the final IIR PR FBs. The 
former is useful to limit the undesirable sidelobe at the band 
edges and design results show that it yields considerable better 
performance compared to conventional model reduction in [7]. 
It should be note that given the denominator, the design of the 
numerator using SDP with linear and convex quadratic 
inequalities is a convex optimization problem.  In other words, 
the solution, given the denominator, is guaranteed to be optimal.  
Owing to the improved frequency characteristics of the 
proposed design method, further optimization, as suggested in 
[7], is usually unnecessary. Hence the design complexity of our 
method, which basically can be regarded as a new model 
reduction technique with constraints, is considerably simpler. 
Since the prescribed K-regularity constraints are just linear 
equality constraint after the denominator has been determined, 
they can be incorporated easily under the SDP framework. 
Interested readers are referred to [10] for more details of SDP in 
filter design. 

The paper is organized as follows: Section II is overview of 
the 2-channel structural PR FBs. The model reduction technique 
proposed in [9] and the principle of the proposed constrained 
model reduction are described in Section III. The details of the 
SDP formulation of the K-regularity and peak design error 
constraints for the IIR FBs will be given. Design examples are 
given in Section IV to demonstrate the effectiveness of the 
proposed approach, and finally, conclusion is drawn in Section 
V. 

II.   TWO-CHANNEL FIR STRUCTURALLY PR FBS   
The structural PR FBs [1,2], as shown in Fig. 1, is 
parameterized by a sub-filter pairs, )(zβ  and )(zα , and two 
delay parameters N  and M . In this structure, the z-transforms 
of the analysis and synthesis filters are given by: 
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It can be shown [2] that the FB is PR for arbitrary choice of 
filter pairs )(zβ  and )(zα . Moreover, the desired responses of 

)( ωβ je  and )( ωα je  are given respectively by: 
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for ],[ ππω −∈ . According to (2-2), once )( ωβ je  and hence 

)(0
ωjeH  are designed, one can obtain the desired response of 

)( ωα je . Consequently, the design of two-channel FIR PR FBs 
can be viewed as simple FIR filter design problems. A number 
of design methods are now available in literature [1,2,5,6].  

III.   DESIGN OF IIR PR FBS AND WAVELET BASES 
A. — Model reduction 
For the sack of presentation, a  will be used to represent either 
β  or α  in the rest of this section, since the design procedures 

for both )( ωβ je  and )( ωα je  are very similar. To start with, 
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suppose that we have designed the FIR filter )(za  using any 
existing methods in the literature, the model reduction technique 
proposed in [9] is then applied to convert )(za  to an IIR filter 

)(ˆ za  with the following form: 
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where paL  and qaL  are respectively the length of numerator and 

denominator of )(ˆ za . As mentioned earlier, the advantage of 
this method is that )(zPa  and )(zQa  can be determined 
separately. More precisely, )(zQa  can be found without the 
knowledge of )(zPa . Therefore, unlike other model reduction 
technique, additional constraints can be readily incorporated 
during the determination of )(zPa . In [9], a simple iterative 
design procedure was proposed to determine )(zQa . More 
importantly, the roots of the resulting )(zQa  are proved to 

strictly lie inside the unit circle, and thus )(ˆ za  is always stable. 
Details are omitted due to page limitation. Interested readers are 
referred to [9] for more details. Once )(zQa  is designed, we 
want to approximate the response of )(za  by )(zPa , given 

)(zQa , in the least square (LS) sense. That is: 
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where T
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following matrix form: 
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This is a standard quadratic programming problem, which can 
be solved readily. However, large sidelodes are usually 
encountered at the band-edge of the model-reduced filter. 
Therefore, additional constraints on the stopband ripple 
constraints should be imposed to improve the frequency 
characteristic. Here, we formulate (3-3) as a SDP problem. To 
start with, one can decompose aU  as a

T
aa GGU = so that it can 

be reformulated, by means of Schur complement [11], as the 
following linear matrix inequality (LMI):  
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where T
a ]0,....0,1[=c and TT

aaa ][ px δ= .The advantage of 
formulating the objective function as LMI is that the resulting 
problem is convex and the optimal solution, if it exists, can be 
found. In addition, additional linear equalities and convex 
quadratic constraints can also be formulated as LMIs, as we 
shall illustrate in later sections. In order to approximate )(za  
with small enough errors using the technique in [9], we found 
that the length of the denominator of )(ˆ za  should satisfy the 
following condition: 

  1)( +≥ agrdLqa , (3-5) 
where )(ygrd  is the passband group delay of the FIR function 

)(zy  and  w  denotes the integer just larger than or equal to w. 
In other words, according to (2-2), we have: 

  15.0 +−≥ NLqβ  and   15.0 ++−≥ NMLqα . (3-6) 
(3-5) tells us that the savings of number of multiplications and 
additions would be more significant if model reduction is 
applied to FIR functions with lower system delay. 
B. — Peak stopband error constraint 
Denote 0δ  as the prescribed peak stopband ripple to be imposed 
on the analysis lowpass filter )(0 zH . These convex quadratic 
constraints are given by: 

0
2
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where pβω  is the passband cutoff frequency of )(zβ . Replacing 

)(zβ  in (2-1a) with )(ˆ zβ  given )(zQβ , (3-7) can be written 
as:  
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Using Schur complement [11], it can be shown that the 
constraints in (3-8) are equivalent to: 
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Digitizing (3-9), these constraints on the peak ripples can be 
augmented to the existing LMI in (3-4) for determining )(zPβ . 

Similarly, the peak stopband error constraint of )(1 zH  can be 
written as:  

1
2

1 |)(| δω ≤jeH , ],0[ pαωω∈ , (3-10) 
where 1δ  and pαω  are respectively the prescribed peak ripple of 

)(1 zH  and passband cutoff frequency of )(zα . Similarly, it can 
be expressed as follows: 
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Again, we digitizing (3-11) and augment these constraints on 
the peak ripples to the existing LMI in (3-4) for finding )(zPα . 

C. — K-regularity condition 
To construct a wavelet FB, the analysis filter pair )(0 zH and 

)(1 zH  should posses at least one zero at πω =  and 0=ω , 
respectively. Let 0K  and 1K  be the number of zeros to be 
imposed respectively at πω =  and 0=ω  for )(0 zH and 

)(1 zH  with 110 ≥≥ KK . This is equivalent to: 
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for 1,...,0 00 −= Kk  and 1,...,0 11 −= Kk . In general, the number 
of zeros imposed for the analysis filters is closely related to the 
following halfband filters )(zH a , α=a  or β : 

2/])([)( 221 aN
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where NN =β  and 1+−= NMNα . Obviously, if )(zH β  has 

βK  zeros at πω = , then )(0 zH  also has βKK =0  zeros at 

πω = . Similarly, )()( 10 zHzF −−=  can be written as: 
12

0
2

0 )()()()( +−⋅+−= NzzHzHzzF αα  (3-14) 
Again, it can be seen that if )(zH β  and )(zHα  have 

respectively βK  and αK  zeros at πω = , then )(0 zF  has at 

least },min{1 αβ KKK =  zeros at πω = . As defined in (3-13), 
the K-regularity condition can be obtained by considering the 
following form of the halfband filter: 
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Expanding (3-16) and after slight manipulation, one gets a set of 
linear equality constraints as follows: 
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and its matrix form is given by: 
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of matrix A . Assume that the number of constraints is smaller 
than the number of variables, part of the variables, called the 
redundant variables, can be expressed in terms of the remaining 
variables, called the independent variables, when solving the 
SDP. First of all, rewrite (3-18) as follows: 
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where DI  is an ( DD× ) identity matrix; DO  is a D  column 
zero vector. By substituting (3-20) into (3-3), rLa pa −,p  can be 

found optimally by the SDP, while satisfying the prescribed 
constraints. Next, we shall summarize the design procedure. 
D. — Design Procedure 

1. Design FIR function )(zα . 
2. Model-reduce )(zα  to an IIR function )(ˆ zα , possibly 

with constraints as described in section III-B and III-C. 
3. Design FIR function )(zβ , given )(ˆ zα . 

4. Model-reduce )(zβ  to an IIR function )(ˆ zβ , possibly 
with constraints as described in section III-B and III-C. 

V.   DESIGN EXAMPLES 
Example 1: Low-delay two-channel structurally PR IIR FB 
For comparison purpose, a two-channel structural PR IIR FB 
having the same specifications of example 3.1 in [7] is designed. 
The lengths of )(zβ  and )(zα  are 36 and 32, respectively. The 
delay parameters are 8=N  and 23=M . The passband cutoff 

frequencies of )(0
ωjeH  and )(1

ωjeH  are π45.0  and π55.0 , 
respectively. )(zβ  and )(zα  are FIR functions which are 
designed using the SDP method [6]. The stopband attenuation of 

)(0
ωjeH  so obtained is 55.5 dB. In [7], model reduction is 

applied to )(zβ  to obtain )(ˆ zβ  with 11== ββ qp LL  and )(zα  
is remained unchanged. It can be seen from the dash-dotted line 
in figure 2a that the worst-case stopband attenuation of the 
model-reduced )(0

ωjeH is about 53.5 dB, which is significantly 

worse than that in the FIR case. )(ˆ zβ  was then further 
optimized using the iterative SDP design method in [12] and the 
stopband attenuation of the resulting IIR analysis lowpass filter 
is improved to 55.5 dB.  For the purposed method, comparable 
result for )(0

ωjeH  is obtained by imposing the peak error 
constraint to limit the sidelode to 55.3 dB at the stopband and no 
further optimization is required, thus reducing considerably the 
design complexity. As for )(1

ωjeH , our design gives a 
stopband attenuation of 55.5 dB, which is 2.7 dB better than that 
in [7]. This improvement is possibly due to the fact that 
the )(zα  in the method proposed in [7] was designed with 
respect to the original FIR )(zβ , but not the final IIR 

approximant )(ˆ zβ . Since model reduction changes )(zβ , the 
response of the original FIR )(zα  is no longer optimal. This 

explains why the frequency response of )(1
ωjeH in [7, figure 

2b] is no longer equiripple and its stopband attenuation is 
degraded. Also, Model reducing this )(zα  will further degrade 

the frequency characteristic of )(1
ωjeH . Unlike the design 

procedure in [7], we design )(zα  based on )(ˆ zβ , i.e. the 
model-reduced version of )(zβ , as described in section III-D. 

This leads to a considerable better performance of )(1
ωjeH  as 

shown in Table 1. In addition to the improved performance, no 
further optimizations are required in our approach, unlike the 
iterative SDP method in [7]. Hence the design complexity of our 
approach is considerably lower. Next, we shall illustrate how to 
incorporate prescribed K-regularity constraints into the model-
reduced FBs. It should be noted that the possibility of imposing 
a prescribed K-regularity constraints was not addressed in [7]. 
Example 2: Low-delay two-channel PR IIR wavelet base 
In this example, a two-channel structural PR IIR FB (i.e. )(zβ  
and )(zα  are chosen as IIR filters) is designed. The design 
specifications are as follows: The cutoff frequencies of 

)(0 zH and )(1 zH  are π48.0  and π52.0 , respectively. The 
filter lengths of )(zβ  and )(zα  are 60 and 73 respectively. The 
delay parameters are 18=N  and 45=M . The stopband 
attenuations of )(0

ωjeH  and )(1
ωjeH  of the two-channel PR 

FIR FB are found to be 43.81 dB and 43.74 dB, respectively. To 
obtain the IIR FB having similar characteristics as its FIR 
counterpart, model reduction is applied according to the design 
procedure described in section III-D. With 20== ββ qp LL  and  

30== αα qp LL , 35 multipliers and 35 adders are saved, 
compared to the FIR case. It can be seen from figure 3a and 3b 
that the LS solutions, which are showed in dash-dotted lines, 
exhibit significant ripples near the band edges, which 
significantly decrease the stopband attenuation. In order to 
illustrate the flexibility of the proposed method, peak error and 
K-regularity constraints are imposed during the model reduction 
of the FIR FB. Using the same specification as above, figure 3 
shows the design results of the IIR FB so obtained. It can be 
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seen from the solid line in figure 3a and 3b that the maximum 
stopband attenuation of the proposed IIR FB is now increased 
from 40.86 dB to 43 dB for )(0

ωjeH , and from 42.56 dB to 44 

dB for )(1
ωjeH . Also, as depicted in figure 3c, )(0 zH and 

)(1 zH  have two zeros at πω =  and 0=ω , respectively. In 
exchange for slightly lower performance at the unconstrained 
frequency bands, both peak error and K-regularity constraints 
are satisfied. This demonstrates the effectiveness of the 
proposed method and its flexibility in incorporating linear and 
quadratic inequality constraints. The design results in this 
example are summarized in table 2. 

V.   CONCLUSION 
A new method for designing two-channel causal stable IIR 

PR filter banks with prescribed peak error and K-regularity 
constraints is proposed. It is based on the model reduction of the 
FIR functions in the structural PR filter banks of Phoong et al by 
a new model reduction technique. The proposed model 
reduction method retains the denominator of the conventional 
techniques and formulates the optimal design of the numerator 
as a semi-definite programming problem. Linear and convex 
quadratic inequalities such as peak error and K-regularity 
constraints for the IIR filters can be imposed and solved 
optimally. Design examples show that the proposed method 
gives better performance, more flexibility in incorporating a 
wide variety of constraints, and lower design complexity than 
conventional method.   
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Figure 1: Structurally two-channel PR FB. 

2a) 2b) 
Figure 2. Design results of low-delay IIR FB in example 1 (peak stopband error 
constraint δ0 = 55.3 dB). a) Frequency response of analysis filters (Stopband 
details of H0(z) in smaller figure): dash-dotted line – model-reduced FIR FB; 
solid line – proposed IIR FB. b) Group delay response of proposed IIR FB.  

3a) 3b) 

 
3c) 3d) 

 
3e) 3f) 

Figure 3. Design results of low-delay IIR wavelet base in example 2 (peak 
stopband error constraint: δ0 = 53 dB and δ1 = 54 dB; K-regularity constraint: K0 
= K1 = 2): a) and b) Frequency response and stopband details of analysis filters: 
dash-dotted line – model-reduced FIR FB; solid line – proposed IIR FB. c) – f) 
Pole-zero plot, group delay response, analysis scaling function and analysis 
wavelet function of the proposed IIR FB.. 

 ω∆  0sδ  1sδ  Mult. Add. Design Complexity 
[7] π1.0 55.5 52.8 53 51 model reduction (SDP-based)

Proposed 
approach π1.0 55.3 55.5 53 51 model reduction, followed by 

iterative SDP 
Table 1: Performance comparisons with [7] in example 1. ∆ω: transition 
bandwidth; δs,m: stopband attenuation of Hm(z), m = 0,1; Mult.: number of 
multipliers; Add.: number of adders. 

 ω∆  0,pδ  0,sδ  1,pδ  1,sδ  10 ,KK Mult. Add.

FIR [6] π04.0 0.055 43.81 0.055 43.74 0,0 133 131
Model reduction π04.0 0.044 40.86 0.044 42.56 N/A 98 96 

Proposed approach π04.0 0.057 43.00 0.056 44.00 2,2 98 96 
Table 2: Summary of design results in example 2. ∆ω: transition bandwidth; 
δp,m: passband deviation of Hm(z), m = 0,1; δs,m: stopband attenuation of 
Hm(z), m = 0,1; Km: number of zeros of Hm(z), m = 0,1; Mult.: number of 
multipliers; Add.: number of adders. 
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