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ABSTRACT

A method for the automatic detection of seizure in new-
borns is presented. The proposed method is derived from
the ability to detect changes in signal structure as the new-
born EEG changes from the background state to the seizure
state. Matching Pursuit decomposition technique, with an
overcomplete time-frequency dictionary, is shown to be an
adequate technique for detecting changes in signal structure.
Changes are detected by using a new signal measure re-
ferred to as structural complexity, which is directly related to
the dictionary being used for decomposition. The structural
complexity measured is then incorporated in the proposed
automatic newborn seizure detection algorithm.

1. INTRODUCTION

Atomic decomposition can be used to represent or approx-
imate a signal as a linear superposition of weighted dictio-
nary atoms. If the dictionary used for the linear expansion
is an orthogonal basis, such as the Fourier or wavelet bases,
then it will not have the ability to provide a good represen-
tation for a wide range of signal structures that are highly
localized in time and frequency. For example, the discrete
Fourier transform cannot provide a good representation of
signal components that have short time durations (i.e. local-
ized in time) and wavelet bases provide poor resolution for
narrow band, high frequency components [1]. The use of
highly redundant, overcomplete dictionaries leads to multi-
ple possible representations of a given signal. The benefit of
using overcomplete time-frequency and/or time-scale dictio-
naries is that the representation can adapt to localized time-
frequency structures.

Matching pursuit (MP) is one atomic decomposition
method that can provide a signal representation using an
overcomplete time-frequency dictionary [1]. The MP algo-
rithm is fast becoming a popular alternative to classical signal
representation. The ability of MP to adapt to localized sig-
nal structures makes it is a suitable technique for the repre-
sentation of non-stationary signals such as the newborn elec-
troencephalogram (EEG) [2]. This indicates that MP, with a
redundant time-frequency dictionary, is suitable for use in an
automatic newborn seizure detection algorithm.

Seizures occur more frequently in newborns than in any
other period of life and are the most prominent sign of central
nervous system abnormalities in the neonate. Approximate
rates of seizure in newborns have been given in the range of
0.15% to 0.55% [3]. Seizures create instant concern about
the possible cause of the brain disorder as well as the effects
seizures may have on the developing brain.

It is believed that in normal brain activity, neurons within
the brain fire randomly. This activity becomes more orga-

nized and neurons discharge synchronously in the case of
seizure. Newborn EEG seizure is characterized by rhythmic
[4] or sharp repetitive waveforms [5] which distinguishes it-
self from the general lack of pattern or structure [3] of the
EEG signal observed during non-seizure periods.

Previous non-parametric methods of newborn seizure de-
tection have been categorized into time, frequency, time-
scale and time-frequency domain based algorithms [6, 4,
7, 2]. The MP algorithm, along with a redundant time-
frequency dictionary, provides a time-frequency signal pro-
cessing technique that can facilitate the non-stationarities
that are present in the newborn EEG signal [2].

In this paper we show, using the MP algorithm, that we
can detect a change in signal structure when a signal becomes
more or less coherent with the decomposition dictionary. A
signal measure, referred to as structural complexity, is firstly
defined. This measure is related to the notion of sparsity or
number of significant atoms in a representation and strongly
depends on the nature of the atoms in the dictionary be-
ing used for decomposition. Structural complexity is then
shown to be capable of distinguishing between seizure and
non-seizure periods in the newborn EEG.

2. MP DECOMPOSITION

Atomic decomposition methods are used to represent or ap-
proximate signals as linear superpositions of weighted atoms
from the dictionary used in the decomposition. The selected
atoms, @y, are chosen from a dictionary ® = { ¢y }yer, with y
being a parameter or set of parameters that uniquely defines
each individual atom in the dictionary. Examples of these
parameters are used, for example, to create the Gabor dic-
tionary which consists of translated, scaled and modulated
versions of a Gaussian window ¢ (¢) such that
b=y
¢y(1) = $¢(T)e

where ¥ = (s,it,&). The representation of signal f is given
as

=Y ooy

yer

where oy is the coefficient associated with the atom ¢,. The
signal f can be approximated using m atoms by

m—1
F=Y ooy ()
i=0

The representation error R"f = f — f is referred to as the
residual [1].
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Figure 1: The structural complexity levels of synthetic sig-
nals when using (a) cosine packet dictionary and (b) Gabor
dictionary as the alternative dictionary ®4.

From the multiple possible representations using an over-
complete dictionary, the MP algorithm provides one. It does
so by enforcing a set of rules associated with specific objec-
tives. MP is an iterative algorithm in which the objective is
to select the atom ¢y, at each iteration that has the largest
inner product with the residual (n.b. RO f = ). The coeffi-
cient oy, takes the value of the inner product (R'f, ¢,;) when
the dictionary & has been normalized so that each atom ¢,
has the same ¢? norm. For our dictionaries ||¢y||» = 1 Vy. A
representation using the MP algorithm can then be given as

m—1

o= Y (RS 6y +R"S
i=0
= ffea
where e, = —R™ f is the approximation error.

3. STRUCTURAL COMPLEXITY

The structural complexity measure is based on a method for
determining significant atoms from MP decomposition. In
an MP decomposition the significant atoms are those atoms
chosen to represent the signal based on predefined criteria.
We note that a signal to error ratio (SER) in decibels given
by

(2:)
SER =10log;o | = 2)
E,,
can be defined given a signal approximation using m atoms
from m iterations of the MP algorithm (see (1)). A stopping
criterion based on a desired level of SER (SERp) can be de-
fined for MP. The MP iterations continue until SER > SERp
[8]. Note that E¢ and E,, in (2) are the energy in f and e,
respectively.

Coherent structures were defined in [1] as signal compo-
nents that have a strong correlation with dictionary atoms. It
should be noted that the number of atoms needed to represent
a signal with structures that are coherent with the decompo-
sition dictionary would be less than with a dictionary that is
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Figure 2: Shows the (a) significant change in structural com-
plexity when the structure in the (b) signal change

not coherent with the signal structures. Therefore we intro-
duce the measure of structural complexity to be the number
of atoms needed by MP to approximate a signal to a spec-
ified SER in conjunction with the dictionary being used for
decomposition.

Figure 1 shows how the structural complexity measure
changes for signals with varying levels of coherency with the
decomposition dictionary. This was achieved by constructing
signals using atoms from two different dictionaries. One dic-
tionary will be referred to as the decomposition dictionary,
®p, as it will be the dictionary used by the MP algorithm
for decomposition. The other dictionary will be referred to
as the alternative dictionary, ®4. Using varying numbers of
atoms from ®p and $4, we can construct signals with vary-
ing levels of structural complexity.

The synthetic signals are constructed using k randomly
selected atoms of which k — [ atoms are selected from ®p
and [ from ®4. [ is then increased from O to k in a number
of steps. In the presented results we have chosen k = 30 and
®p as the overcomplete wavelet packet dictionary.

It was expected that as / increased so too would the level
of structural complexity. This is because more atoms from
&, were being used for signal construction and the signals
became less coherent with ®p. All atoms used in construct-
ing the signals, whether they were from ®p or 4 were nor-
malized so that their #> norm was equal to one. For each
value of /, twenty five realizations were obtained so that an
average number of atoms needed to approximate the signal
could be calculated. The MP approximations were chosen
such that the desired SER is 15dB.

In Figures la and 1b we have used an overcomplete co-
sine packet and overcomplete Gabor dictionary as ®4 respec-
tively. In both Figures 1a and 1b it can be seen that as the sig-
nals are constructed with more ®4 atoms and less ®, atoms
the level of structural complexity increases.

Figure 2 is a synthetic example of how the structural
complexity measure can detect a change in signal structure.
The synthetic epochs were created using 100 atoms from
the wavelet packet dictionary, ®p and the cosine packet
dictionary, ®4. The synthesized epochs were created with
atoms randomly selected from ®p and ®,4. Three types of
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epochs with three levels of coherency with the ®p were
created such that

e Epochs 1 — 100: &p =15 & &4 =85
e Epochs 101 — 200: &p =50 & $4 =50
e Epochs 201 — 300: &p =85 & P4 =15

Figure 2a indicates exactly when there is a change in the
structures that form the signal in Figure 2b. The entire signal
is the concatenation of the synthesized epochs.

The above results show that MP, using the structural com-
plexity measure, can indicate a change in signal structure
when the structures in the signal change so that they become
more or less coherent with ®p. That is, if the structures in
the signal become less coherent with ®p, an increase in the
structural complexity will result. A decrease in the structural
complexity occurs when the signal structures become more
coherent with ®p.

4. NEWBORN EEG ANALYSIS USING
STRUCTURAL COMPLEXITY

The newborn EEG signals analyzed in this paper were all
recorded at the Royal Children’s Hospital, in Brisbane, Aus-
tralia. Fourteen electrodes placed according to the inter-
national 10-20 standard of electrode placement allowed for
twenty channels to be recorded using the bipolar derivation
method. The recording was done using the Medelec system
with a sampling frequency of F; = 256Hz. A notch filter at
50Hz was applied to remove any AC line artefacts.

The EEG recordings were partitioned into epochs of len-
gth 2048 samples. The stopping criterion for the MP algo-
rithm was SER > SERp = 13dB. A dictionary that would be
coherent with newborn seizure was desired as we believed
this would result in a drop in structural complexity when
the EEG changed from the background state to the seizure
state. It has previously been observed that the newborn EEG
seizure are rhythmic in nature [4] and this was confirmed in
our initial analysis of the EEG in our database. Therefore
a cosine packet dictionary was chosen to be used by MP in
the decomposition. The newborn EEG seizure has also been
demonstrated to exhibit time-varying linear FM like compo-
nents [2]. Therefore a cosine packet dictionary would be
much more suited to this type of signal than a Fourier dic-
tionary due to the non-stationarity.

In analyzing the non-seizure recordings with the struc-
tural complexity measure, using the cosine packet dictionary,
it was found that the non-seizure periods contained relatively
constant levels of structural complexity. This is shown in
Figure 3a, which corresponds to the complexity levels of the
newborn EEG in Figure 3b.

Most of the severe short-term fluctuations that occur dur-
ing non-seizure and seizure periods are an effect from some
form of artefact with significant amplitude. Large amplitude
artefacts can be in the form of spikes or slow waves. Both
generally cause a reduction in the structural complexity mea-
sure. This can be seen particularly in the non-seizure section
of Figure 4 where the normally constant non-seizure EEG
complexity levels have a number of sharp drops. However,
with low pass filtering to smooth the structural complexity
time series, these short sharp fluctuations can be reduced and
a clear distinction between seizure and non-seizure can still
be observed (see Figure 4). This is a post-processing method
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Figure 3: (a) Shows the structural complexity levels associ-
ated with the (b) non-seizure newborn EEG
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Figure 4: Non-seizure and seizure structural complexity re-
sults in raw and smoothed form from channel P4-T6.

which reduces the affect large amplitude artefacts have on
the structural complexity measure.

There were, however, a number of seizures that did not
correspond to low structural complexity levels when using
the cosine packet dictionary for decomposition. Instead we
found a significant increase in the structural complexity as
is shown in Figure 5. However, we can still distinguish this
type of seizure from non-seizure sections using the structural
complexity measure.

Further analysis of the EEG signals gave insight to the
reasons for various structural complexity levels for differing
patterns in newborn seizure. A typical epoch associated with
low complexity is given in Figure 6a and the usual seizure
epoch associated with high complexity is shown in Figure 6b.
The high energy low frequency rhythmic pattern in Figure 6a
is easily represented by a small number of cosine packet dic-
tionary elements, which results in a low structural complex-
ity level. However the epoch in Figure 6b has an even spread
of energy over a wider range of frequencies and therefore a
large number of atoms in its representation (i.e. high struc-
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Figure 5: Non-seizure and seizure structural complexity re-
sults in raw and smoothed form from channel F4-C4.

tural complexity).

5. EEG SEIZURE DETECTION

A sliding window of 2048 samples with an overlap of 60%
was used on all twenty available channels from the newborn
recordings. The structural complexity value was calculated
for each epoch after the epoch had been high pass filtered
with a cutoff frequency at F,, = 0.3Hz. The high pass fil-
ter removed any DC components along with insignifcant low
frequencies [9]. The structural complexity results were then
treated as a time series and were fed into a lowpass filter
to smooth the structural complexity measure (see Figure 4
& 5). This reduced the sharp drops in the structural com-
plexity measure caused by large amplitude artefacts as men-
tioned in Section 4. A range of structural complexity values
that characterized the non-seizure period was then calculated
such that 5% of structural complexity values were outside
this range.

To reduce false detection rate Pr, a requirement was in-
cluded in which a minimum length of twenty seconds of
seizure structural complexity levels was needed for a seizure
to be registered. That is, structural complexity levels that
indicated seizure had to be present in five or more consecu-
tive epochs in at least one channel before the epochs would
be officially classed as seizure. In the analysis of five new-
borns, this resulted in an average true seizure detection rate
Pr = 93.5% with false alarms at Pr = 4.5%.

6. CONCLUSION

In this paper a new signal measure, namely structural com-
plexity, which relies specifically on the dictionary being used
by MP, has been proposed. It has been shown that the struc-
tural complexity measure can be used to indicate a change in
signal structure. Detecting a change in newborn EEG signal
structure as it changes from the non-seizure state to seizure
state has been shown to be an application of this measure. An
automatic seizure detection algorithm has been proposed in-
corporating the structural complexity measure. The detection
algorithm resulted in a true seizure detection rate of 93.5% in
conjunction with a false alarm rate of 4.5%.
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Figure 6: Typical seizure epochs associated with (a) low
structural complexity and (b) high structural complexity
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