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ABSTRACT 
Atmospheric turbulence causes a random blur in images 

due to random fluctuations of the refraction index of the air 
through which the light propagates. An algorithm is de-
scribed that compensates image distortion due to the atmo s-
pheric turbulence in video while keeping the real moving 
objects in the video unharmed. The result of the restoration 
of the video sequence is a much more "stable" sequence 
where real mo ving objects are easier to detect and track. 
This algorithm is based on Differential Elastic Image Regis-
tration which maps each turbulent image to a one good ref-
erence image derived from the sequence of the turbulent 
images. To preserve real motion in the scene, the moving 
objects are located  and the compensation for the distortion 
of the turbulence is applied only to the static areas of im-
ages. The algorithm provides also a smooth transition be-
tween the static and the mo ving areas in the image. 

1. INTRODUCTION 

Long distant near-earth observations in a hot mid-day are 
highly affected by atmospheric turbulence that causes spa-
tially and temporally random fluctuations in the index of 
refraction of the atmosphere [1]. These fluctuations in the 
optical path length of the propagating light result in phase 
and amplitude variations of the light's wavefront. Unlike 
astronomical systems, where the entire frame can be mo d-
eled by the convolution of the object with a single, though 
random, point spread function, the long distant near-earth 
observation have wider field of view and are modelled by 
convolution with space variant and random point spread 
functions [2]. This causes small neighborhoods in the image 
to randomly move in different directions in different frames. 
As a result, images captured by optical sensors in the pres-
ence of atmo spheric turbulence are affected by degradation 
of resolution and distortion of the image geometry. Watching 
such video sequences is highly disturbing the eye of the ob-
server since static objects appear to waver in time. Atmo s-
pheric turbulent motion appearing throughout the entire im-
age makes it harder for the observer to detect  real moving 
objects in the viewed field.  

There is variety of methods for the enhancements of tur-
bulent captured images [3,4,5]. In this paper, a method for a 
post-processing enhancement of the captured video that sta-
bilizes steady parts of the scene and improves the quality of 

the image sequence for the observer. A differential image 
elastic registration method is used to find the translation vec-
tor for each pixel in each frame of the video sequence to "in-
verse-warp" the image to its "true" geometry. Using this 
same elastic registration method one can also detect the areas 
of real motion of objects in the scene and use this detection 
for warping back only the static parts. This way a stable 
scene is restored where the only moving areas in the scene 
are the real moving objects. 

2. THE ALGORITHM 

2.1 Generating geometrically undistorted images with 
no moving objects 

A variety of methods have been proposed for generating 
one improved image from a sequence of images retrieved by 
a non-scanning fixed sensor. In [6,7], images are averaged to 
compensate for small random local displacements, a transfer 
function is estimated, and a Wiener filter is used for restora-
tion.  The algorithm proposed in this paper uses an element-
wise rank filtering of each pixel in time sequence to obtain a 
reference image for elastic registration of steady parts of the 
scene [8]. The use of rank smoothing filters such as median 
and alpha-trimmed mean is substantiated in two ways. First, 
light beam propagating through a turbulent atmosphere will 
deflect to any point within a certain radius [10], and the dis-
tribution of the deflection has a zero mean which means that 
the center of this area will be in the same location where the 
light beam would hit if there were no turbulence present. 
Therefore, statistically, pixel’s real value (if there were no 
turbulence) would be very close to the mean of the array of 
the same pixel's values in a long period of time. The second 
reason for using a rank filter instead of a mean filter is the 
fact that for moving objects that accommodate a pixel for a 
short period of time, the value of this pixel will be pushed to 
the tails of the grey level distribution in a long sequence. The 
distribution tales will be eliminated when applying the rank 
filter. It is important that the number of the images will be 
high enough to eliminate the moving objects. A turbulent 
degraded image is presented in Fig. 1(a). The local geometric 
distortions can be easily seen wherever curved lines appear 
instead of straight lines. A result of a median filter over a 
sequence of 128 images is shown in Fig. 1(b) .First of all one 
can see in the figure that local geometrical distortions are 
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fixed. It is even better seen in video sequences. Second, mo v-
ing objects have disappeared from the image. As can be seen 
in the figure, the vehicles have dissappeared from the scene 
leaving an empty road. The non-turbulent image obtained is 
intended as a reference/target image for computing the trans-
lation vectors for each small neighborhood distorted by the 
turbulence. 

2.2 Elastic registration model 

Assuming there is no real moving objects in the image, 
the mapping of one turbulent image to a stable image can be 
obtained by registrating a spatial neighborhood, surrounding 
each pixel in the image, to a reference image. In this way a 
field of motion vectors is received. Each pixel is then 
mapped to its non-turbulent location. The translation vector 
is found using an elastic registration method. A similar 
method is also described in [11]. In it's simplest form, the 
method assumes that it is sufficient to find only two parame-
ters of the translation vector for every pixel.  

Let ),,( tyxf  be a turbulent source image frame, f (x,y) 
be a target reference image, and dx and dy are shift parame-
ters: 

),(),,( dyydxxftyxf ++=          

The translation vector ∆
r

= (x0,y0) is computed for each small 
spatial neighborhood through minimization of the mean 
square differences between the registrated areas of the two 
images:  
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where 0Ω  denotes a small spatial neighbourhood of pixel 
(x0,y0). Using a first-order truncated Taylor series expression 
we get: 
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In vector matrix denotation, the error function is approxi-
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Figs. 2 (c,d) illustrate, in form of grey scale images, the spa-
tial distribution of local translation vectors in x and y direc-
tions, respectively, obtained for turbulence degraded image 
shown in Fig. 1 (a) and for a reference image shown in Fig. 
1(b). Window size for determination of local translation vec-
tors was 7x7 pixels. This translation vector field provides, for 
every frame, the image displacements needed to align it with 
the reference image. 

In general, atmospheric turbulence may distort images 
not only by displacing them but also by rotating neighbor-
hoods. Image frames may also differ in contrast and bright-
ness in comparison to a reference image. One can incorporate 
displacement and rotation parameters and an explicit change 
of local contrast and brightness by means of more general 
model:  

),(),,( 4321 dyyrxrdxyrxrfbtyxfc ++++=+⋅  

(b) 
Figure 1: The turbulent captured image (a) and the non-turbulent image obtained by the median filter (b).
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as it is described in [11] where dx and dy form a translation 
vector, r1 through r4 form a 2x2 affine matrix and c,b are the 
parameters of change in image contrast and brightness re-
spectively. Adding these parameters may improve the accu-
racy of the inverse-warp of the turbulent image. 

2.3 Turbulent compensation 

Using a “stationary” scene, and having found the transla-
tion vector field, it is now possible to warp each pixel of the 
turbulent image to its "true" location where it would have 
been if there had not been any turbulence. Absolute values of 
the translation vector components are in general, non-integer 
numbers which requires image resampling with sub-pixel 
shifts. We used a warp technique with discrete sinc-
interpolation in moving window in DCT domain to obtain 
the value of the intermediate pixels with least mean square 
error [8,9]. The resulting image is composed of the interp o-
lated values of the turbulent image shifted into their true lo-
cations as if there was no turbulence. 

For a better compensation, the result of the turbulent 
compensation can be computed in more than one iteration. 
For a second iteration it is required to compute a translation 
vector field using the first set of compensated images as the 
source and the same reference image as the target. The image 
obtained in the first iteration is warped again by sinc-
interpolation using the new calculated vector field. It has 
been found in our experiments, that this process converges 
very rapidly so only two iterations are sufficient to obtain a 
near-optimal result.  
Bilinear and sinc interpolation were tested on simulated tur-
bulent-degraded images. It was found that in the first itera-
tion the mean square error between the original image and 
the interpolated turbulent-degraded image is very close using 
both types of interpolation. When applying a second intera-
tion it was found that the MSE converges when sinc-
interpolation is applied while it diverges when bilinear inter-
polation is applied. 

2.4 Compensation in the presence of motion 

The translation vector ∆
r

 is used to warp pixels of static 
objects and background to their non-turbulent location. At the  

location occupied by moving objects, ∆
r

 will not be a 
true translation vector because the target image, obtained by 
the rank filtering, may not contain that moving object. There-
fore  it is necessary to distinguish between real motion and 
turbulent motion in the image sequence.  

The suggested algorithm detects object’s motion in the 
following way. After alignment of turbulent frames to the 
reference image, the error function of Eq. (1) is  computed 
again for every pixel. The resulting array of errors contain 
two types of errors. One type is  that of the error of the turb u-
lent mis -compensations due to the inaccuracies of the transla-
tion vector and of resampling. This error is small and is 
bounded to a certain limit. The second type of error are large 
errors typical for areas in the image where real moving ob-
jects appear. Areas occupied by large errors can be easy de-
tected and marked to form a mask for segmentation and ex-
traction of moving objects from initial video sequence.  

Compensating the turbulent distortions of only the static 
areas may leave visible unnatural edges surrounding the 
moving objects. In order to obtain a smooth transition be-
tween the static and the moving areas, the error matrix is 
truncated at a certain threshold (thr) where any value exceed-
ing this threshold is considered a real motion as following: 
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A new translation vector field is then calculated for each 
pixel location(x,y) the new value is given by  

∆
r

2 (x,y)= ).()),(~1( yxyxE ∆⋅−   
In this way, for no motion ∆

r
2(x,y) remains the same and 

becomes zero where there is an error exceeding the decided 
threshold. Since )(

~
∆

r
E is not a binary number, any value be-

tween zero and one will reduce the value of ∆
r

 according to 
the error's size. This way the transition from a moving object 
to the background in the image will be smooth and made 
unnoticeable to the eye of the observer. 

If a second iteration is used for the turbulent compensa-
tion step, the new translation vector is calculated in the same 
manner for a second time but there is no need to compute the 

Figure 2: Translation vector fields from the turbulent-degraded image (a) to the reference image (b) are depicted in 
(c) and (d) for the x and y components respectively. 

              (a)       (b)             (c)    (d) 
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error )(
~

∆
r

E again. The error that was found in the first itera-
tion should be used again since it was the one that distin-
guished b etween the static and the moving areas:  
∆

r
2 (x,y)2nd_iter=( )(

~
1 ∆−

r
E 1st_iter ) ∆⋅

r
 (x,y)2nd_iter  

To get the restored un-distorted video, each turbulent image 
in the video sequence is warped by the matrix ∆

r
2 (x,y) cal-

culated for that image using discrete sinc-interpolation for 
best results. 

3. EXPERIMENTAL RESULTS 

The proposed algorithm was tested on an artificia l video se-
quence prepared by simulation and on real captured turbulent 
videos. Sequences consisted of 128 images of turbulent 
scenes containing moving objects. A non-turbulent single 
frame of a real captured turbulent video was shown in Fig. 
1(a). In this experiment, an un-distorted stationary image was 
calculated using a median filter over each pixel using all 128 
images Fig. 1(b). This image served as a reference for com-
putation of the translation vectors from each of the turbulent 

images. As can be easily seen, the vehicles on the road have 
disappeared. 

Finding the translation vectors and solving the error func-
tion, we obtain an image of the moving objects’ locations in 
form of a weight error function as it is illustrated in Fig. 3(a). 
Finally warping only the static objects/background back to 
their true geometrical location in the scene results in a non-
turbulent image retaining the real movement in the field, 
figure 3(b). As can be compared with the source image (fig-
ure 1a), the restored image background contains straight lines 
with no visible geometric distortions while the moving vehi-
cles appear without any artifacts on sharp edges around them 
that may appear due to segmentation. A result video can be 
found on authors website [12]. 

4. CONCLUSIONS 

An algorithm for compensating image blur in a sequence of 
video frames, obtained through a turbulent atmosphere, is 
suggested and proved to be effective on a variety of video 
sequences recorded under turbulence effects. The algorithm 
is intended to be used for surveillance where the scene is 
stationary and objects such as cars, people, tanks, etc. happen 
to pass through the scene. The resulting video scene does not 
waver as the source and yet the moving objects are left un-
harmed and easier to detect in a stable background. 
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(b) 
Figure 3: The error function when the transla-
tion vector is substituted (a) and the resulting 
image of the non-turbulent background and unaf-
fected vehicles (b) 
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