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ABSTRACT

In this paper we exploit spectral correlation of color images
in the RGB space for lossless image coding. We propose a
simple way to use this correlation in a predictive model by
correcting the prediction in one band by means of the predic-
tion error in the adjacent band.

The experimental results show that this method gives a
significant performance improvement over all the tested pre-
dictors.

1. INTRODUCTION

Lossless compression of images became in the last years an
important option for several applications like scientific and
medical images.

While the state-of-the-art for lossy compression has
reached a quite mature stage, lossless compression is an hot
topic that is now being considered for color images and video
coding [1]. The majority of lossless compression algorithms
are developed for grey-scale images and they only use the
spatial correlation. So when these algorithms are used to
code color images they do not exploit the correlation be-
tween adjacent spectral bands. This correlation is very use-
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Figure 1: Spectral correlation in RGB space of Tulips image.

ful when working on the RGB space because the three bands
are strongly correlated (see Figure 1).

This paper explores the possibility to exploit the RGB
space spectral correlation by performing a prediction cor-
rection using the prediction error of adjacent bands. The

proposed technique gives significant improvements in per-
formance with a low computational cost.

The paper is structured as follows: in Section 2 we re-
view a method presented by Memon and Sayood in [2] and
we propose some modifications to improve its performances.
Section 3 presents the GLICBAWLS algorithm [3] and some
ways to reduce its complexity [4]. In Section 4, the predic-
tion correction by spectral correlation is presented in detail.
Finally, conclusions are drawn in Section 5.

2. LOSSLESS COMPRESSION BY MEMON AND
SAYOOD ALGORITHM

Memon and Sayood [2] use spectral correlation to select the
best fixed predictor among the set of JPEG lossless mode [5]
predictors in a color band. Then, they use it to predict the
adjacent band current pixel.

The results of fixed predictors are reported in Table 1 for
3 x 8 = 24 bit/pixel RGB images. Predictor 6 is the best of
the set (on the average) when coding is performed using a
fixed predictor for coding the three R, G and B components.
Memon-Sayood algorithm (9" column of Table 1) improved
by 1.4 bit per pixel the results obtained by the best JPEG
lossless predictor. In the same table (10" column) we have
also reported the results obtained including the MED adap-
tive predictor used in JPEG-LS [6]

min(a,b)
ﬁx,y = max(a, )
a+b—c

if ¢ > max(a,b)
if ¢ < min(a,b)
otherwise

where a = p,_1,, b = pyy—1 and ¢ = py_1y—1. The results
show an improvement of 0.14 bit/pixel over the original ver-
sion of the algorithm.

3. GLICBAWLS ALGORITHM

GLICBAWLS is an acronym for Grey Level Image Com-
pression By Adaptive Weighted Least Squares. It is a pre-
diction based coder introduced by Meyer and Tischer in [3].
At the beginning it was developed to work on grey-scale im-
ages and, after, the authors proposed a version which was
able to code color images. This algorithm achieves the best
compression among all the available methods but at a high
computational cost.

GLICBAWLS constructs the optimal linear causal pre-
dictor of the current pixel using the twelve neighbor pixels
with Manhattan distance < 3 (in the following referred to as
P12). New weights are calculated for each pixel of the image,
taking into account all the pixels already coded.
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Image JPEG lossless mode Memon Memon-Sayood
predictor number MED | Sayood | with Med in the set
1 ‘ 2 ‘ 3 | 4 | 5 | 6 ‘ 7 of predictors
Lena 15.64 | 14.61 | 16.11 | 1531 | 1491 | 14.52 | 1440 | 1441 | 14.21 14.12
Peppers | 13.80 | 14.18 | 15.37 | 13.23 | 13.06 | 13.10 | 13.19 | 12.60 | 12.03 11.83
Monarch | 13.68 | 13.77 | 14.62 | 13.03 | 12.82 | 12.87 | 12.74 | 1246 | 11.33 11.23
Sail 16.99 | 17.88 | 18.80 | 17.13 | 16.55 | 16.84 | 16.70 | 16.29 | 14.30 14.16
Tulips 15.33 | 14.83 | 16.39 | 13.86 | 13.96 | 13.71 | 14.13 | 13.48 | 12.48 12.33
Average | 15.08 | 15.05 | 16.26 | 14.51 | 14.26 | 14.21 | 14.23 | 13.85 | 12.87 12.73

Table 1: Prediction error entropy on a set of test images (in Bit per Pixel).

Given the autocorrelation’s matrix A; of pixel i and the
vector b; that contains R, G or B values we compute the ma-
trix

N
Ac = Zo.g\xC*Xi\H}'C*MAi (1)
=1

1

and the vector

N
be = Z 0.8c—il+lye—vilp,

i=1

@

where the factor 0.8c—%l+lyc=il js used to give less weight
to the pixels with higher distance from the current position
(pixel). In (1) and (2), N is the number of previously coded
pixels. The prediction coefficients are calculated solving the
linear system

AcW = bc. (3)

From this equation we can calculate the predicted value for
the current pixel
12
Pry = Z Wil
k=1
with n; the R, G or B value of the causal pixel k£ with Man-
hattan distance < 3 from the current one.

The pixel value is then coded through an arithmetic bi-
nary coder in bit’s plane mode. It starts from the MSB down
to the LSB and the zero’s probability is computed modelling
the prediction error by a modified Student distribution cen-
tered on the predicted pixel value [3].

Linear prediction is computationally demanding be-
cause for each pixel the algorithm solves one linear sys-
tem of twelve equations in twelve unknowns for each R,
G and B component. The complexity is ¢'(n3/6) using the
Chowlesky algorithm to solve system (3).

One idea to reduce complexity is to exploit spectral cor-
relation and to reuse the red band coefficients in the adja-
cent bands (green and blue). In this way we use the opti-
mal predictor in the first band and sub-optimal predictors in
the other bands [4]. So, the GLICBAWLS performance is
slightly reduced (on the average about 0.1 bit/pixel: see first
two columns of Table 2) but the algorithm becomes about
two times faster.

Another way to reduce the GLICBAWLS complexity is
to calculate the optimal linear predictor on the six pixels
which have Manhattan distance < 2 with respect to the cur-
rent pixel (referred to as P6). In this way the algorithm

Image 12 pixels predictors | 6 pixels predicotors
|  Reuse | Reuse
Lena 12.75 12.81 12.87 12.93
Peppers | 11.19 11.34 11.28 11.43
Monarch | 10.86 10.92 11.01 11.07
Sail 14.67 14.70 15.09 15.12
Tulips 11.58 11.91 11.82 12.09
Average | 12.21 12.33 12.42 12.54

Table 2: Modified GLICBAWLS algorithms.

“only” solves three linear systems of six equations in six un-
knowns. This version has a computational complexity five
times smaller than the original. Also in this version we can
reuse the optimal coefficients of red band in the other bands.

The results (in bit/pixel) of the algorithms are reported in
Table 2. We can observe that we lose a maximum of 0.33
bit/pixel in going from the first to the fourth column but, cor-
respondingly, we reduce ten times the algorithm complexity.
Now it is very important to underline that, while Table 1 re-
ports the first order entropy of prediction error, Table 2 gives
the actual bit per pixel value obtained.

4. PREDICTION CORRECTION BY SPECTRAL
CORRELATION

Another simple and effective way to exploit the spectral cor-
relation is to correct the predicted pixel value in one band
using the prediction error of the adjacent component.
More precisely the prediction can be corrected (see Fig-
ure 2) using the following procedure.
e The algorithm predicts the red band current pixel £z and
the prediction error

er = xg — xR
is coded as described in Section 3.
e The adjacent green component current pixel is predicted
as X, and the prediction error
e =xc —X¢

is computed. The predicted value % is then corrected by
subtracting the red band prediction error eg. In this way
the corrected predicted value becomes

Xg =X —er
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Figure 2: Prediction correction by prediction error of adjacent band.

Image RGB independently coded

12 pixels pred. 6 pixels pred.

With corr. With corr.

Lena 12.75 12.57 12.87 12.63
Peppers 11.19 9.93 11.28 9.96
Monarch | 10.86 9.24 11.01 9.21
Sail 14.67 11.34 15.09 11.40
Tulips 11.58 10.14 11.82 10.17
Average | 12.21 10.64 12.42 10.87

Table 3: GLICBAWLS algorithm applied independently on
the three spectral bands with or without prediction correc-
tion.

and the prediction error
e =xg —Xg =xg —Xg +er.

The current pixel x¢ is coded centering the modified Stu-

dent distribution on X.

e The algorithm predicts the current pixel on the blue band
and it applies a correction similar to that used for the
green band. The green band prediction error eg (made
before the correction) is used to correct the blue band
(Figure 2).

The correction introduced has a very low computational cost
and it can be applied to any predictor. It is effective since
the correction sharpens the estimated prediction error distri-
bution hence reducing the underlying entropy as shown in
Figure 3 and in Figure 4.

The proposed prediction correction method improves the
GLICBAWLS performance of 1.55 bit/pixel when the R, G
and B components are independently coded for both P12 and
P6, as shown in Table 3.

Table 5 shows the results obtained when the prediction
correction is applied on the GLICBAWLS version that reuses
the optimal coefficients of the red band on the other bands. In
this case a greater gain of about 1.9 bit/pixel is obtained, i.e.,
the performance increases when the prediction correction is
applied to the reduced complexity algorithms. Comparing
2" and 4" columns of Tables 3 and 5 it results that there is a
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Figure 3: Prediction error distribution without (solid line)
and with (dashed line) prediction correction of the green
band of Monarch image.
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Figure 4: Prediction error distribution without (solid line)
and with (dashed line) prediction correction of the blue band
of Monarch image.
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Image JPEG lossless mode Memon Memon-Sayood
predictor number MED | Sayood | with Med in the set
1 ‘ 2 ‘ 3 4 | 5 | 6 ‘ 7 of predictors
Lena 14.85 | 14.06 | 15.25 | 1497 | 14.40 | 14.13 | 13.75 | 14.04 | 14.08 14.00
Peppers | 12.17 | 13.19 | 14.26 | 11.18 | 11.27 | 11.66 | 11.87 | 11.15 | 11.56 11.34
Monarch | 11.84 | 11.99 | 13.06 | 10.21 | 10.55 | 10.64 | 10.88 | 10.37 | 10.58 10.48
Sail 1291 | 13.33 | 1438 | 11.79 | 11.83 | 11.97 | 12.11 | 11.87 | 12.22 12.08
Tulips 13.23 | 12.84 | 1442 | 11.02 | 11.61 | 11.39 | 12.02 | 11.33 | 11.75 11.60
Average | 13.00 | 13.08 | 14.27 | 11.83 | 11.88 | 11.96 | 12.13 | 11.75 | 12.04 11.90

Table 4: Prediction error entropy in a set of static image (in Bit per Pixel) using prediction correction.

Image Reuse coefficients of red band on others bands Image ‘ Without correction | With correction

12 pixels pred. 6 pixels pred. Lena 13.53 13.53

With corr. With corr. Peppers 11.76 10.56

Lena 12.81 12.51 12.93 12.63 Monarch 11.31 9.84
Peppers | 11.34 9.99 11.43 10.05 Sail 15.51 11.67
Monarch | 10.92 9.12 11.07 9.21 Tulips 12.54 10.74
Sail 14.70 10.83 15.12 10.98 Average 12.93 11.27
Tulips 11.91 10.20 12.09 10.26
Average | 12.33 1053 12.54 10.63 Table 6: LOCO-I algorithm with and without correction of

Table 5: GLICBAWLS algorithm with reuse of red predic-
tion coefficients on the other bands without and with predic-
tion correction.

0.11 bit/pixel improvement in the P12 case and a greater 0.24
bit/pixel improvement in the P6 case. The reason for this
improvement is that when reusing coefficients of red band
we introduce additional correlation between prediction errors
on different bands. So, the proposed prediction correction
exploits this additional correlation to cancel the performance
loss reported in Table 2 and explained in Section 3.

To show the effectiveness of the prediction correction
method independently of the predictor used, Table 6 reports
the results obtained applying it to the LOCO-I algorithm [6].
The prediction correction improves the LOCO-I performance
by 1.66 bit/pixel.

Finally we apply the method to correct the prediction of
the JPEG lossless predictors introduced in Section 2. The re-
sults are reported in Table 4 where we can notice an average
improvement of about 2 bits/pixel with respect to the results
of Table 1. In this case the Memon-Sayood algorithm is not
the best one because the simpler fixed MED predictor with
prediction error correction did better on the average. Possi-
bly, in this last case, the prediction errors are more correlated
so the spectral correction introduced works better.

5. CONCLUSION

In this work we presented a new method to exploit the
spectral correlation in lossless prediction based color image
coders. The procedure gives good performance improvement
independently from the used predictor and its complexity is
very low.

prediction by prediction error of adjacent band.

This method should also give good performance on
multi-spectral images where the adjacent bands are closer
than the RGB bands, so that they are more correlated and
therefore the prediction error of adjacent bands is more cor-
related too.
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