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ABSTRACT

In this paper the problem of blind frequency offset and carrier phase
estimation in orthogonal frequency-division multiplexing (OFDM)
systems with noncircular transmissions is considered. In this case,
if the number of subcarriers is sufficiently large, the OFDM sig-
nal becomes an improper complex Gaussian process. By exploit-
ing the joint probability density function for improper (or noncir-
cular) complex Gaussian random vectors maximum likelihood esti-
mators for the parameters of interest are derived, and moreover, the
Cramér-Rao lower bound is evaluated.

Keywords: Frequency offset and carrier phase recovery, OFDM
systems, noncircular transmissions.

1. INTRODUCTION

In [1] blind maximum-likelihood (ML) estimation algorithms for
frequency offset and carrier phase, separately, have been derived.
Specifically, these algorithms have been obtained by maximizing
the low signal-to-noise ratio (SNR) limit of the likelihood function
averaged over the symbols transmitted on all the subcarriers.

However, when the number of subcarriers is sufficiently high,
the OFDM signal can be modelled as a complex Gaussian process
[2]. Moreover, if a noncircular signal constellation is adopted (i.e.,
if the mathematical expectation of the squared symbol is not equal
to zero), the OFDM signal becomes an improper [3] complex ran-
dom process since its pseudoautocorrelation function is different
from zero [4].

In this paper it is shown that in the case of noncircular transmis-
sions the frequency offset and the carrier phase can be jointly esti-
mated. Specifically, by exploiting the joint probability density func-
tion (PDF) for improper (or noncircular) complex Gaussian random
vectors proposed in [5], the joint ML estimator for the parameters
of interest is derived. The performance of the proposed estimator, is
assessed via computer simulations and compared with the Cramér-
Rao lower bound.

2. SIGNAL MODEL

In the considered OFDM system the received signal is modeled by

r(k) = s(k)e j[ 2π
N εk+φ ] +n(k) (1)

where s(k) is the OFDM signal with power σ 2
s = E[|s(k)|2], ε is the

frequency offset normalized to the intercarrier spacing and φ is the
carrier phase. Furthermore, n(k) is proper complex white Gaussian
noise with power σ 2

n = E[|n(k)|2] and statistically independent of
s(k). The OFDM signal s(k) can be written as

s(k) = σs

∞

∑
p=−∞

gp(k− pM) (2)

with

gp(q) =



















f q+N−L
p , q = 0,1, . . . ,L−1,

f q−L
p , q = L,L+1, . . . ,M−1,

0, otherwise,

(3)

where N is number of subcarriers, L is prefix length and M = N +L
represents the effective length of the OFDM symbol. The f v

ps are
the inverse discrete Fourier transform (IDFT) of the data sequence
given by

f v
p =

1√
N

N−1

∑
l=0

al
pe j 2π

N lv, v = 0,1, ...,N −1, (4)

where al
p denotes the symbol transmitted on the lth subcarrier dur-

ing the pth OFDM symbol. It is assumed that the number of sub-
carriers N is sufficiently large so that the OFDM signal s(k) can be
modelled as a complex Gaussian process. Moreover, it is assumed
that the data symbols al

p are statistically independent and identically

distributed random variables, with zero-mean and E[| al
p |2] = 1, be-

longing to a noncircular constellation with E[(al
p)

2] = b 6= 0. Non-
circular constellations of particular interest are those with real data
symbols. Moreover, new noncircular constellations have been also
recently proposed in [6].

3. LIKELIHOOD FUNCTION

In this section the correlation and pseudocorrelation properties of
the received signal are analyzed to derive the log-likelihood func-
tion for ε and φ .

Let r = [r(0) · · ·r(N + L− 1)]T the column vector containing
N +L samples within one OFDM symbol, it results that the samples
in the cyclic prefix and their copies are pairwise correlated, i.e.,

E [r(k)r∗(m)]=



















σ2
s +σ2

n , m = k, (5.1)

σ2
s e− j2πε , k ∈ τ1, m = k +N, (5.2)

0, otherwise, (5.3)

where the superscript ∗ denotes complex conjugation and τ1
4
=

{0, . . . ,L − 1}. Moreover, due to the assumption of noncircular
transmissions (i.e., E[(al

p)
2] = b 6= 0), for N > 2L and N ≥ 2, it

follows that

E [r(k)r(m)]=



































γσ2
s , k ∈ τ1, m = 2L− k, (6.1)

γσ2
s , k = m = L, (6.2)

γσ2
s e j2πε , k ∈ τ2, m = 2L+N − k, (6.3)

0, otherwise, (6.4)
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where τ2
4
= {L+1, . . . ,L+N −1} and

γ 4
= bexp

{

j

[

4π
N

εL+2φ
]}

. (7)

Thus, in this case the complex Gaussian process modelling the
OFDM signal becomes an improper [3] random process, since its
pseudoautocorrelation is different from zero [4].

Let us note that, accounting for the correlation and pseudocor-
relation properties of the observations r (assuming that N is even)
the set of the received samples r(k), k ∈ {0,1, . . . ,N +L−1}, can be
decomposed in four subsets of random variables such that elements
belonging to different subsets are statistically independent of each
other. Specifically, for k ∈ τ1, in virtue of (5.2), (6.1) and (6.3),
the samples r(k), r(2L− k) and r(N + k) are mutually correlated
noncircular complex Gaussian random variables. Moreover, from
(6.3) follows that, for k ∈ {2L + 1, . . . ,L + N/2− 1}, the samples
r(k) and r(2L+N −k) are pairwise correlated noncircular complex
Gaussian random variables. Finally, from (6.2) and (6.3) follows
that the samples r(L) and r(N/2 + L), belonging to the third and
fourth subset, respectively, are noncircular complex Gaussian ran-
dom variables. Therefore, the log-likelihood function for ε and φ
can be written as

Λ(ε,φ) = log f (r | ε,φ)

= log













f (r | ε,φ)
N+L−1

∏
k=0

1
π(σ2

s +σ2
n )

exp

[

− |r(k)|2
σ2

s +σ2
n

]

N+L−1

∏
k=0

1
π(σ2

s +σ2
n )

exp

[

− |r(k)|2
σ2

s +σ2
n

]













= c1 + log





L−1

∏
k=0

f (r(k),r(2L− k),r(k +N))

exp
[

− |r(k)|2+|r(2L−k)|2+|r(k+N)|2
σ 2

s +σ 2
n

]

× f (r(L))

exp
[

− |r(L)|2
σ 2

s +σ 2
n

] × f (r(L+ N
2 ))

exp
[

− |r(L+ N
2 )|2

σ 2
s +σ 2

n

]

×
N/2+L−1

∏
k=2L+1

f (r(k),r(2L+N − k))

exp
[

− |r(k)|2+|r(2L+N−k)|2
σ 2

s +σ 2
n

]



 (8)

where the constant c1 is independent of (ε,φ). Note that the one-,
two- and three-dimensional PDFs f (·) involved in (8) are PDFs of
noncircular complex Gaussian random variables. Their expression
is derived in Appendix A taking into account the correlation and
pseudocorrelation properties of the observations r reported in (5)
and (6) and by exploiting the generalized multivariate distribution
for improper complex Gaussian random vectors proposed in [5].
Specifically, by disregarding additive constants independent of the
desired parameters, the log-likelihood function takes the form

Λ(ε,φ) =
c2

σ2
s +σ2

n
ℜ

[

Ae− j2πε + γ∗
(

C +De− j2πε
)]

, (9)

where ℜ [·] denotes real part, γ is defined in (7),

A
4
= (1−ρ|γ|2)

L−1

∑
k=0

r∗(k)r(k +N) , (10)

C
4
= (1−ρ)

L−1

∑
k=0

r(k)r(2L− k)+
ρ

c2(1−ρ2|γ|2)
r2(L), (11)

D
4
= (1−ρ)

L−1

∑
k=0

r(k +N)r(2L− k)

+
ρ

c2(1−ρ2|γ|2)
N−1

∑
k=2L+1

r(k)r(N +2L− k),

(12)

c2
4
=

2ρ
(1−2ρ2|γ|2 −ρ2 +2ρ3|γ|2) (13)

and

ρ 4
=

σ2
s /σ2

n

1+σ2
s /σ2

n
=

SNR
1+SNR

. (14)

In low SNR conditions and for circular transmissions (i.e., for γ =
0), the log-likelihood function (9) takes the form

ΛC(ε) =
2σ2

s

σ4
n

ℜ

{

L−1

∑
k=0

r∗(k)r(k +N)e− j2πε

}

. (15)

This low SNR approximation of the log-likelihood function, previ-
ously derived in [1] without the Gaussian assumption for the OFDM
signal, is independent of the phase φ and, then, only the frequency
shift ε can be estimated. However, also in low SNR conditions by
considering non circular transmissions both the parameters of inter-
est can be estimated.

4. PROPOSED ESTIMATORS

In this section, the proposed estimators are derived and the Cramér-
Rao lower bound in the estimation of ε and φ is evaluated.

The maximum likelihood estimator is obtained by searching the
value of the vector (ε,φ) that maximizes the log-likelihood func-
tion. To proceed we keep ε fixed and let φ vary. In these conditions
Λ(ε,φ) achieves a maximum for

φ̂MLNC(ε) = −2π
N

Lε +
1
2
∠

[

C +De− j2πε
]

+nπ , (16)

where n is an integer and ∠[·] denotes the argument of a complex
number. We assume that the condition |φ | ≤ π

2 is satisfied; thus
we set n = 0. Accounting for (9) and (16), the ML frequency shift
estimate is obtained by

ε̂MLNC = argmax
ε̃

[

ℜ
{

Ae− j2πε̃
}

+
∣

∣

∣
C +De− j2πε̃

∣

∣

∣

]

(17)

where ε̃ denotes a trial value of ε .
In the case of circular constellations the low SNR approxima-

tion of the log-likelihood function (15) is maximized for

ε̂MLC = − 1
2π

∠

L−1

∑
k=0

r(k)r∗(k +N). (18)

This estimator was previously derived in [2] and [1].
From (16) follows that the carrier phase estimator φ̂MLNC gives

unambiguous estimates if | φ |≤ π
2 . Moreover, since the function to

be maximized with respect to ε in the right hand side (RHS) of (17)
is a periodic function of unit period, and, in addition, accounting
for (18), it follows that the frequency offset estimators ε̂MLNC and
ε̂MLC give ambiguous estimates unless | ε |≤ 0.5.

Let us now evaluate the Cramér-Rao lower bound (CRB) in the
estimation of ε and φ . Accounting for (9) the Fisher information
matrix is given by

F = 4ρc2

×







π2
[

k1 + k2
4k2 +(k4 +1)2k3

]

π [k4k2 +(k4 +1)k3]

π [k4k2 +(k4 +1)k3] k2 + k3







where
k1

4
= (1−ρ|γ|2)L,

k2
4
= (1−ρ)|γ|2L+ |γ|2 ρ

c2(1−ρ2|γ|2) ,

k3
4
= (1−ρ)|γ|2L+ |γ|2 ρ

c2(1−ρ2|γ|2) (N −2L−1)
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and

k4
4
=

2L
N

.

The Cramér-Rao lower bound of the frequency offset and the carrier
phase estimate is given by the corresponding diagonal element of
inverse of Fisher information matrix F−1, that is

CRBε = [F−1]11 =
k2 + k3

4π2ρk5c2
, (20)

CRBφ = [F−1]22 =
k1 + k2

4k2 +(k4 +1)2k3

4ρk5c2
, (21)

where k5
4
= k1k2 + k1k3 + k3k2. The RHS of (20) and (21), depend,

through an unmanageable relation, on the number of subcarriers N,
the cyclic prefix length L, SNR and the signal constellation (through
the parameter γ). Therefore, in the following several approxima-
tions of (20) and (21) are derived.

In the case of noncircular constellations with |γ | = 1 (e.g., real
data symbols) for high values of SNR and for N � L, CRBε and
CRBφ take the form

CRBε ≈ 3
2π2SNR(8L+3)

(22)

CRBφ ≈ 3
2SNR(8L+3)

. (23)

Moreover, in the case of noncircular constellations with |γ| 6= 1
and for high values of SNR, CRBε and CRBφ can be approximated
by

CRBε ≈ 1
4π2LSNR

(24)

CRBφ ≈ (1−|γ|2)
4N|γ |2 . (25)

Finally, in the case of circular transmissions (γ = 0) only the
frequency shift can be estimated and, for high values of SNR, the
lower bound is

CRBε ≈ 1
4π2LSNR

. (26)

This expression is coincident with the high SNR approximation of
the variance, derived in [1], of the frequency shift estimator (18).

Note that in the case of noncircular constellations with | γ |6= 1
the CRBε is coincident with the Cramér-Rao lower bound of the
frequency offset in OFDM systems with circular transmissions (see
(24) and (26)) and both coincide, for high values of SNR, with the
variance of ε̂MLC in (18). Thus, no gain can be expected, for large
values of SNR, in the frequency offset estimation by exploiting non-
circularity when | γ |6= 1. However, a gain can be achieved in the
case where | γ |= 1 (see (22) and (26)).

5. NUMERICAL RESULTS

The performance of MLNC and MLC estimators is assessed via
computer simulation and compared with the Cramér-Rao lower
bound. Specifically, Fig.1 presents the bias and the variance for
frequency offset and carrier phase estimates, evaluated by averag-
ing over 20000 runs, as a function of SNR in an AWGN channel.
An OFDM system with N = 256 BPSK subcarriers and a cyclic pre-
fix length fixed at L = 1 (dashdot lines), L = 2 (dashed lines) and
L = 12 (solid lines) is considered. MLNC and MLC estimators are
indicated by ‘∗’ and ‘◦’ markers, respectively. The results show that
performance improvement of the MLNC frequency offset estimator
with respect to the MLC estimator, increases as the prefix length
decreases. Note that the MLNC estimator achieves, for sufficiently

high values of SNR and for high values of L, the Cramér-Rao lower
bound (line without markers). Moreover, only the performance of
MLNC phase estimator is reported, since the method proposed in
[1] does not allow to jointly estimate the frequency offset and the
carrier phase. The performance of the MLNC estimator improves
as the size of the cyclic prefix increases.

Appendix A

In this appendix we derive the expression of the PDFs of noncircular
complex Gaussian random variables involved in (8).

Let us consider the random variables x1
4
= r(k), x2

4
= r(2L− k)

and x3
4
= r(k+N) where k ∈ τ1. The noncircular complex Gaussian

random vector v1
4
= [x1 ,x∗1 ,x2 ,x∗2 ,x3 ,x∗3]

T is characterized by the
joint PDF [5]

f (v1) =
1

π3
√

det(V1)
exp

[

− vH
1 V−1

1 v1

2

]

where the superscript H denotes complex conjugate transposition
and the covariance matrix V1 , accounting for (5) and (6), is given
by

V1
4
= E[v1vH

1 ] = (σ2
s +σ2

n )

[

I R1 R2
R1 I R3
R∗

2 R3 I

]

where I is the 2×2 identity matrix,

R1
4
=

[

0 ργ
ργ∗ 0

]

,

R2
4
=

[

ρe− j2πε 0
0 ρe j2πε

]

and, moreover,

R3
4
=

[

0 γρe j2πε

γ∗ρe− j2πε 0

]

.

Thus, it follows that

f (v1) =
1

π3
√

det(V1)

×exp
{

− c2

2ρ(σ2
s +σ2

n )

[

(|x1|2 + |x3|2)(ρ2|γ|2 −1)

+|x2|2(ρ2 −1)−2ρ(ρ −1)ℜ
(

x1x2γ∗ + x2x3γ∗e− j2πε
)

−2ρ(ρ|γ|2 −1)ℜ
(

x∗1x3e− j2πε
)]}

,

where the determinant det(V1) is independent of ε and φ .

Let us now consider the random variables x4
4
= r(k) and x5

4
=

r(N + 2L− k) where k ∈ {2L + 1, . . . ,N/2 + L− 1}. The noncir-

cular complex Gaussian random vector v2
4
= [x4 ,x∗4 ,x5 ,x∗5]

T has
covariance matrix

V2 = (σ2
s +σ2

n )

[

I R3
R3 I

]
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Fig.1. Bias (left) and variance (right) of MLNC and MLC estimators as a function of SNR for N = 256 and for a cyclic prefix length fixed at
L = 1 (dashdot curves), L = 2 (dashed curves) and L = 12 (solid curves). MLNC and MLC estimators are indicated by ‘∗’ and ‘◦’ markers,
respectively. The Cramér-Rao lower bounds are indicated with lines without markers.

and is characterized by the joint PDF

f (v2) =
1

π2(σ2
s +σ2

n )2(1−ρ2|γ|2)

×exp

[

− |x4|2 + |x5|2 −2ρℜ
(

x4x5γ∗e− j2πε)

(σ2
s +σ2

n )(1−ρ2|γ|2)

]

.

Finally, the noncircular complex Gaussian random variables x6
4
=

r(L) and x7
4
= r(N/2+L) are characterized by the PDFs

f (x6,x
∗
6) =

1

π(σ2
s +σ2

n )
√

1−ρ2|γ|2

×exp

[

−
|x6|2 −ρℜ

(

x2
6γ∗

)

(σ2
s +σ2

n )(1−ρ2|γ|2)

]

and

f (x7,x
∗
7) =

1

π(σ2
s +σ2

n )
√

1−ρ2|γ|2

×exp

[

−
|x7|2 −ρℜ

(

x2
7γ∗e− j2πε

)

(σ2
s +σ2

n )(1−ρ2|γ|2)

]

,

respectively.
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