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ABSTRACT 
Several features are found to discriminate between the vo-
cals sounds and other environmental sounds. The vocal 
sounds include speaking, laughter, etc., 23 kinds of non-
verbal and verbal sounds; and the environmental sounds are 
recorded in domestic environments.  

The discriminative features are selected from 22 kinds 
of features. They are the speech recognition features of 
LPCC and MFCC, time-spectral features from FFT, statistics 
of pitch values and contour, ratio of voiced and unvoiced 
segments, and spectrum of pitch contour. The 9 features cal-
culated from pitch contours perform much better than the 
features calculated from spectrums, which show no 
discriminability. 

The classification is performed simply by a neural net-
work to evaluate the performance of the 9 features. They are 
tested on a 21CDs environmental sound database. And the 
hit rate of 98.73% with the false alarm rate of 11% are ob-
tained. The classification result confirms the effectiveness 
and efficiency of the features. 

1. INTRODUCTION 

This paper introduces several discriminative features found 
for the discrimination between the vocal sounds and other 
environmental sounds. The work is one part of the envi-
ronmental sound recognition system and one of its func-
tions is to detect and identify the vocal sounds from other 
environmental sounds. 

The vocal sounds include verbal and non-verbal sounds. 
Dozens of human sounds are categorized into the “non-
verbal sounds”, including babble (referring to the babble of 
children); blow (referring to the nose blow); burp; choke; 
cough; cry; gasping; groan; hiccup; humming; laughter; 
scream; sigh; singing; sneeze; snore; throat (referring to the 
sound of clearing throat); vomit; wheezing; whistle; yawn 
and yell. And the “verbal sounds” mean the speaking sounds 
here, but not considering the language meaning of the 
speech. So there are totally 23 kinds of sounds considered.  

Except for the vocal sounds other environmental sounds 
include 16,000 tracks collected from 21 sound effect CDs, 
plus the RWCP (Real World Computing Partnership/Real 
Acoustic Environments Working Group) Sound Scene Data-
base in Real Acoustical Environments [1]. Among them, 5 
CDs are human vocal sounds. And 2 CDs are all kinds of 
non-verbal sounds from persons of different ages and sexes; 

another 2 CDs are speech, with different ages, sexes, lan-
guages, durations and styles; and the left 1 CD is sounds of 
babies. Except the 5 CDs of vocal sounds left 16 CDs and 
the RWCP database are all environmental sounds, including 
more than 10,000 tracks of animal sounds, sounds from hu-
man movements and bodies, impact sounds, periodic sounds, 
sounds in kitchen, sounds in washroom, etc. (A complete list 
needs pages of tables and is not listed here to save space, and 
the interesting readers can see the content descriptions of the 
sound effect CDs launched by Sound Ideas Co. [2]) 

Almost all kinds of domestic sounds are collected in the 
database, but except the music. It is not considered currently. 
Also the vocal sounds and the environmental sounds are all 
separated into different tracks and not mixed here. So the 
problem is quite different from and much simpler than the 
computational auditory scene analysis problem stated by 
Bregman[3], which must separate and recognize the differ-
ent sources automatically from one mixed stream. 

Section 2 introduces the discriminative features ex-
tracted and the performance test for each feature; Section 3 
gives the classification test using a neural network; and Sec-
tion 4 gives the experiment result; finally Section 5 con-
cludes and gives the future work. 

2. DISCRIMINATIVE FEATURES  

There has not yet been any parameterized model or struc-
tured model to describe the transient characteristics of the 
vocal sounds. But it is believed that the vocal sounds can be 
detected and identified as for that human can recognize it 
easily no matter it is a language he never hears before or 
from a person he never knows. So the first step attracting us 
is to find out the most discriminative features or cues. 

2.1 Feature extraction 
Intuitively several features must be considered: 

Firstly, the spectral distribution of vocal sounds should 
be considered. So several features describing the amplitude 
spectrum envelope are selected as candidates: the speech 
recognition conventional features of MFCC (Mel-frequency 
Cepstrum Coefficients) and LPCC (Linear Prediction Cep-
strum Coefficients) [4], and FFT spectrum. Also the centroid, 
bandwidth, roll-off-frequency and bandwidth energy ratio of 
the FFT spectrum are used to decrease the feature dimension. 

Secondly, the pitch characteristics of vocal sounds 
should be used too. It is believed that the pitch contour is 
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one of the most important cues for vocal sound recognition 
as for that it stems from the variation of vocal cords vibra-
tion, stressness of organ tissues and muscles, pressure of 
lungs and the breath rate. All the features are unique for hu-
man, or mammal. So the features describing the pitch con-
tour and its range and variability are selected as candidates: 
statistics of fundamental frequency, duration of voiced seg-
ment, duration ratio of voiced/unvoiced segments, and the 
FFT spectrum of pitch contour. Also the centroid, bandwidth 
and roll-off-frequency of the pitch amplitude spectrum are 
used to decrease the feature dimension. 

Several feature computations are listed below. 
• LPCC: 12 coefficients, calculated using the Durbin al-

gorithm described in [5]. 
• MFCC: 12 coefficients, calculated as in [4]. 
• FFT: coefficients from 16 FFT to 512 FFT. 
• Amplitude spectrum centroid (Cen): 
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Here, )(uf is the short-term FFT spectrum of the ham-
ming-windowed sound signal, and u  is the discrete fre-
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0ω . 
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• Amplitude spectrum roll-off-frequency (Rof): 
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TH=0.85.  
Here, M is the maximal frequency bin index of 

0ω . 

• Bandwidth energy ratio (Ber): 

∑

∑

=

== M

u

Hi

Liu
i

uf

uf
Ber

0

2

2

)(

)(
, i=0,1,…N-1                   (4) 

Here the Nyquist band is divided into N sub-bands: [0, 
1

0 2/ −Nω ], [ 1
0 2/ −Nω , 2

0 2/ −Nω ], …, [ 2/0ω ,
0ω ], and Hi = i2/0ω , 

Li = 2/2/ 1
0 Hii =+ω  , except 

1−NL , which is zero.  
4 bandwidth energy ratios are calculated separately in 

the 4 sub-bands of the 512 FFT spectrum here, as in [6~8]. 
The above 7 features are calculated from the short-term 

frame of 20ms hamming windowed signal, and the frame 
shift is 10ms.  

• F0 (Fundamental Frequency) statistics: the mean and 
the variance of F0 values. They are calculated for each 
track. It is found out that setting F0 zero for unvoiced 
segment enhances the separation of F0 distributions be-
tween the vocal sounds and the environmental sounds to 
a great extent. So F0 is set zero for unvoiced segments 
during the pitch tracking process. 

• Two duration ratios of voiced and unvoiced segments 
(Vtr and Zkb): 

Figure 1. Durations of voiced and unvoiced segments 
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It is clear from (5) and (6) that Vtr is the weighted aver-
age of Zkb. And Zkb is calculated for each pair of voiced and 
unvoiced segments; and Vtr is calculated for each track. 

• Spectrum of pitch contour (PitFFT32): The 32 FFT is 
calculated on every 300ms pitch contour to get the am-
plitude spectrum of the pitch contour. Also the centroid, 
bandwidth and roll-of-frequency are calculated. 
Finally 22 features are considered. They are LPCC12, 

MFCC12, FFT16, FFT32, FFT64, FFT128, FFT256, 
FFT512, CenOfFFT512, BanOfFFT512, RofOfFFT512, 
Ber4OfFFT512, F0, MeanOfF0, VarOfF0, Vtr, Zkb, 
PitFFT32, CenOfPitFFT32, BanOfPitFFT32, RofOf-
PitFFT32 and Zcr (zero-crossing-rate). 

2.2 Discrimination performance of each feature 
The discrimination performance of each feature depends on 
the separation degree of the feature distributions between 
the vocal sounds and the environmental sounds. So the 
GMM (Gaussian Mixture Model) [4] is used to model the 
distribution of each feature. Here 50 mixtures are selected 
experimentally through a series of preliminary tests to find 
an appropriate number of mixtures. And the diagonal co-
variance matrix is used for the GMM of the multi-variant 
feature. Then the GMMs of each feature from vocal sounds 
are trained through EM algorithm [4]. 

The discrimination performance of each feature is 
evaluated by using its Gaussian mixture distribution model 
of vocal sounds to detect the vocal sound frames from the 
total sound frames in the database. Different hit rates and 
false alarm rates can be obtained under the different likeli-
hood threshold conditions. Then the performances of differ-
ent features can be compared through the detection perform-
ance curves of hit rates and false alarm rates. 

2.2.1 Test data 
The training and testing data are selected from the environ-
mental sound database, including 3 hours of vocal sounds, 
as listed in Table 1, and 14 hours of environmental sounds, 
including the 12,000 tracks from 16 CDs and the RWCP 
database. 

1 hour of vocal sounds, including 0.5 hour of non-verbal 
sounds and 0.5 hour of speech sounds, is used to train the 
GMM of each feature. Then the left 2 hours of vocal sounds 

F0 (voiced segment) 
F0 set to zero (unvoiced segment) 

Tvi Tvj Tui 
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and the total 14 hours of environmental sounds are used in 
the test. 

Table 1. Contents of vocal sounds 
Non-
verbal 

Verbal (speaking) 

Sex Contents 14 Languages Sex 
Male, 

female, 
baby 

Broadcasting of 
news, weather, 
sports, etc; con-
versation; movie 

scene; etc. 

English, French, 
Spanish, Italian, 
Japanese, Ger-
many, Russian, 

etc. 

Male, 
female,
baby 

1.5 Hrs 1.5 Hrs 

2.2.2 Result  
Among the 22 features tested, 8 features based on pitch 

contours, plus Zcr, are discriminative, but others related to 
the spectrum distributions all fail to detect the vocal sounds. 
The performance curves are plotted in Figure 2. The legends 
are ordered according to the performances. It is very clear 
that the curves in the left-upper region are mostly from the 
features calculated from the pitch contours; but the ones in 
the right-lower region are all the features related to the spec-
trum. So the 9 features from F0 to VarOfF0 are most dis-
criminative and can detect the vocal sounds much better than 
the other features. 

The result is quite different from those using spectrum 
features to distinguish speech from noise [9~11]. The main 
reason is that firstly only speech is considered because they 
are used in a robust speech recognizer or a channel switcher; 
secondly the noise background discussed is mainly the 
communication channel noise. So the vocal sounds and the 
environmental sounds here are more general than previous, 
and the serious overlap between their feature distributions in 
the spectrum feature space arises.  

So the 9 features of F0, MeanOfF0, VarOfF0, Vtr, Zkb, 
CenOfPitFFT32, BanOfPitFFT32, RofOfPitFFT32 and Zcr 
are selected.  

3. NEURAL NETWORK CLASSIFICATION 

Section 2 only gives the detection performance of each sin-
gle feature by means of GMM feature distribution likeli-
hood modelling. It is very direct to train a single multi-
variant GMM for the distribution of the vector composed of 
the 9 features. Then the detection performance of the 9 fea-
tures can be evaluated and should be much better than any 
of the single one.  

Also a feature transformation matrix can be applied on 
the 9 features to remove the linear dependence of different 
features by means of PCA (Principle Component Analysis) 
or LDA (Linear Discriminant Analysis) [12]. But it is not 
critical here because the feature dimension has been very 
small, and the non-linear classifiers are not sensitive to the 
dependency of feature dimensions.  

Here we prefer to the discriminative non-linear classi-
fier rather than the likelihood classifier of GMM because 
there are thousands of environmental sounds in the database 
that can be used to train the classifier discriminatively and 
enhance the recognition performance. So a neural network is 
used to test the recognition performance of the 9 features. 

The Neural network is the forward-feeding network 
with 4 layers: layer 1 is 9 neurons as input nodes; layer 2 is 5 
to 10 neurons as inner decision nodes; layer 3 is 2 to 5 neu-
rons; and layer 4 is 1 neuron as output node, outputting a 
value between 0 and 1 as the a posterior probability estima-
tion. It is implemented by Matlab6.5® and the training func-
tion train() using the backward-propagation algorithm is 
used. During the train process:  

• Feature frames from the vocal sounds and from the en-
vironmental sounds are alternatively input to the NN; 

• The vocal sound frames are repeatedly batch-used dur-
ing one batch of the environmental sound frames. The 
number of the latter is around 5 times the number of the 
former; 

• Frame-asynchronous features are combined into one 
frame vector by means of combing one long-term fea-
ture with the short-term features within its duration time.       
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Table 2. Hit rates (HR) and false alarm rates (FR) of 12 experiments 
ID 1 2 3 4 5 6 7 8 9 10 11 12 

Train HR (%) 100 99.22 95.34 98.87 99.52 100 99.24 99.15 99.41 100 98.9 99 
Train FR (%) 0 4.73 3.46 0.78 0.2 0.12 0.03 2.67 1.95 0.93 0.67 1.32 
Test HR (%)★ 13.16 98.73 96.5 97.4 98 98 99.24 100 100 98.6 99.8 99.86
Test FR (%)★ 14.39 11 10.27 10.3 11.77 10.52 8.62 10 9.87 7 7.85 8 
NN neurons* 5, 2 5, 2 5, 2 10, 5 15, 7 20, 10 5, 2 10, 5 20, 10 5, 2 10, 5 20, 10

1% 10% 50% 50% 50% 50% 10% 50% 50% 10% 50% 50% Training set 
size** 1‰ 1% 10% 10% 10% 10% 1% 5% 5% 1% 5% 5% 

 Gender-independent Male  Female  
* “m, n” means m neurons in layer 2 and n neurons in layer 3. 
** The upper row of “Training set size” is the percentage of training tracks with the total vocal sounds of 3 hours; and the lower row is the 
percentage of training tracks with the total environmental sounds of 14 hours. 
★ Testing set size is the left tracks in the database except the training tracks, so if 10%  of the gender-independent vocal sounds are used to 
train the NN then the left 90% of the gender-independent vocal sounds are used to test the hit rates. Also if 1% of the environmental sounds 
are used to train then the left 99% of the environmental sounds are used to test the false alarm rates. 
 

Then the a posterior probability estimation is output 
each frame step of 10ms from the trained network and the 
averaged value is used as the score of the whole track, which 
compared with the threshold of 0.5. 

4. EXPERIMENT RESULT 

Training and testing of the neural network are carried out 
under the different conditions of training set size, testing set 
size and network parameters. Results are listed in Table 2. It 
is concluded from the table that: 

• The second row (ID 1) shows a complete separation for 
the training set but no classification for the testing set, 
because the training set is too small to train the network 
with generalization. 

• Left tests show performance with around 98% hit rate 
and 10% false alarm rate; 

• Around 99% hit rate and 8% false alarm rate can be ob-
tained in the case of gender-dependent; 

• 7 inner neurons are enough for the classification; 
• The training set of 10% vocal sound samples, which are 

around 20 minutes, and 1% environmental sound sam-
ples, which are around 10 minutes, are enough for the 
network training. 
So the network classifier can distinguish between the 

vocal sounds and other environmental sounds quite effi-
ciently, which shows the effectiveness and efficiency of the 
9 features. 

5. CONCLUSION 

9 discriminative features are determined for the classifica-
tion between the vocal sounds and the complex environ-
mental sounds. It is found out that the pitch-based features 
win, compared with the spectrum-related features. It con-
firms that the vocal sounds are recognized by the unique 
pitch contours, at least. That is, the voiced/unvoiced 
concatenation in the limited range of V/U transfer 
frequency (related to the syllable rate of 4Hz [6]); the 
limited range of duration ratios of V/U segments; and the 
sliding track of pitch with the limited speed.  

The future work includes the analysis on the acoustic 
and perceptual correlates for the vocal sounds, especially on 

the pitch and the formants; the modelling of the dynamic 
characteristics of vocal sounds; and furthermore the recogni-
tion between the 23 kinds of vocal sounds. 
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