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ABSTRACT

In this paper a brief review of recent contributions on
nonlinear methods for active noise control is presented.
Models based on polynomial filters are considered in
some detail and an account on novel techniques used to
adapt multichannel nonlinear controllers is given. Pos-
sible future research lines are prospected, too.

1. INTRODUCTION

Methods for active noise control (ANC) are nowadays
intensively studied and have already provided promis-
ing applications in vibration and acoustic noise control
tasks. The initial activities originated in the field of
control engineering [1] while in recent years a signal
processing approach has been succesfully applied [2, 3].
This approach strongly benefited of the advances in elec-
troacoustic transducers, flexible digital signal processors
and efficient adaption algorithms. The technique used
for ANC is based on the destructive interference in a
given location of the noise produced by a primary source
and the interefering signal generated by a secondary
source. Successful implementations of this principle can
be found in systems such as air conditioning ducts, to
attenuate the low frequency noise due to the fans, or
in transport systems, to reduce the noise generated by
the engines inside propeller aircraft, automobiles and
helicopters. Physical limitations generally restrict the
frequency range of these active control systems to be-
low a few hundred hertz. The main limitation is related
to the wavelength of the acoustic waves in connection to
the extension of the silenced area. At higher frequencies
(up to 500 Hz), it is still possible to cancel the sound in
a limited zone around, for example, a listener’s ear, and
suitable systems have been successfully implemented for
headsets and zonal control. For disturbance frequencies
above 1 kHz passive systems, based on the absorption
and/or reflection properties of materials, are still the
better choice.

Most of the studies presented in the literature refer
to linear models while it is often recognized that non-
linearities can affect actual applications. In fact, non-
linear effects may be present according to the behavior
of the noise source and the paths modeling the acoustic
systems. Therefore, nonlinear modeling techniques may
bring new insights and suggest new developments in the
design of active noise controllers.

In this paper the active control of acoustic noises
is considered in the framework of a signal processing
approach, with particular reference to a nonlinear envi-
ronment. From this point of view, the main problems
to discuss are the derivation of efficient adaptation al-
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Figure 1: Multichannel active noise control.

gorithms for the nonlinear controller and their fast im-
plementation for real-time applications.

The scenario describing the problem of ANC is
briefly depicted in Section 2. The nonlinearities involved
will be reviewed in Section 3, together with some recent
contributions on nonlinear approaches. Models based
on polynomial filters will be considered in some detail
and an account on novel techniques used to adapt the
nonlinear controller will be given in Section 4. A few
simulation results will be reported in Section 5. Finally,
possible future research lines will be prospected.

2. THE ANC SCENARIO

As mentioned in the Introduction, the principle of ANC
is the cancellation of an acoustic disturbance based on
the destructive interference with another noise produced
by the controller with the same amplitude but opposite
phase. The specific ANC strategies are usually divided
in two classes, namely feed-forward methods, where ref-
erence signals measured in proximity of the noise source
are available, and feedback methods, where the reference
signals are not available. The ANC systems can then
be further subdivided in single-channel and multichan-
nel systems, according to the number of reference sen-
sors, error sensors and actuator sources used. A multi-
channel ANC feed-forward scheme is shown in Figure 1.
The multichannel scheme is used to spatially expand
the silenced region with respect to the single-channel
approach at the expenses of an increased computational
complexity.

As shown in Figure 1, I microphones are used to
collect I input signals z;(n) generated by the noise
source and fed to the adaptive controller. The original
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noise propagates up to the region to be silenced through
the so-called primary paths. The adaptive controller
generates J noises y;(n) that are propagated through
the so-called secondary paths. The undesired sound
dpr(n) destructively interfer with the generated sounds
dsi(n). The error microphones thus collect K errors
ex(n) = dpr(n) + dsx(n) and send them back to the
controller, where they are used together with the input
signals, to adapt it. Commonly, the controller is de-
scribed by means of I x J FIR filters connecting any
input ¢ to any output j. The secondary paths are still
modeled as FIR filters and preliminary and independent
evaluations of their impulse responses s;x(n) are needed.
Then, according to the linearity assumptions, it results

Zsﬂc xy;j(n) =

pk n)

n) + Zsjk(n) % {Z h], (n)xi(n)} —

J I
n)+ > Y hij(n) {s(

j=1i=1

n)xxi(n)}, (1)

where x;(n) is the vector of the last N; input samples
collected at the reference microphone i

xi(n) = [zi(n) zi(n —1)---ai(n — N+ DY (2)
and h;;(n) is the vector of the N; coefficients of the

FIR filter connecting the input ¢ to the output j of the
controller

h;j(n) = [hi;(0) hi;(1)--

The symbol * indicates the operation of linear convo-
lution. Due to the presence of these convolutions, the
adaptation algorithms derived on the basis of this model
take the attribute of Filtered-X.

As shown in [4], the main drawbacks of the multi-
channel approach are the complexity of the coefficient
updates, the data storage requirements and the slow
convergence of the adaptive algorithms, even though the
continuing evolution in the DSPs permits us to be op-
timistic about real-time implementations. On the other
hand, single-channel schemes offer a reduced complexity
but with a limited extension of the cancellation zone. In
consideration of the additional complexities introduced
by nonlinearities, research papers dealing with nonlin-
ear controllers are presently limited to the single-channel
case.

“hig(Ni =D (3)

3. NONLINEAR EFFECTS IN ANC

In this section we review the main nonlinear effects that
may influence the behavior of an active control system
and thus motivate the use of nonlinear active noise con-
trollers.

3.1 Nonlinear reference noise

It has been recently noted [5, 6] that the noise generated
by a dinamic system can be often modeled as a non-
linear and deterministic process of chaotic rather than
stochastic nature. In particular, it has been shown in
[7] that the noise of the fan in a duct is well modeled by
a chaotic process. Three kinds of chaotic noises, i. e.
logistic, Lorenz and Duffing noises, have been applied
n [5] to test the nonlinear single-channel controller pro-
posed there. Among these noises, the logistic chaotic
noise offers a simple and useful test signal since it is
a second-order white and predictable nonlinear process
generated by the following expression

= AS(n)(1 = ¢(n)), (4)

where A = 4 and £(0) is a real number in the open inter-
val 0 — 1 (with the exclusion of the values 0.25, 0.5 and
0.75). The impact of this kind of noise on the controller
performance becomes evident when the secondary path
is modeled as a non-minimum phase FIR filter. In fact,
the transfer function of the single-channel controller that
minimizes the square of the error signal needs the ap-
proximation of the inverse of the transfer function of
the secondary path with a noncausal linear filter. It has
been shown in [5] that, while a zero-lag linear inverse
does not exist, a zero-lag nonlinear inverse exists if the
input signal is stochastic non-Gaussian or deterministic.

&n+1)

3.2 Nonlinear primary path

Another situation in which a nonlinear model is required
is when the primary path exhibits some nonlinear distor-
tions. Evidence of this fact can be found, for example,
in ducts where the noise is propagating with high sound
pressure [6] and the nonlinearity of the air is taken into
account.

A practical model commonly used to describe mild
nonlinearities is based on the well-known Volterra series
[8]. This kind of model demands a nonlinear controller
described by a Volterra filter. It is worth noting that for
these filters it is possible to derive efficient updating al-
gorithms by exploiting the linearity of their output with
respect to the kernel coefficients. A nonlinear Filtered-
X LMS algorithm based on a Volterra model has been
first proposed in [6], where a multichannel implementa-
tion for the nonlinear controller is analyzed, by exploit-
ing the so-called diagonal coordinate system proposed
in [9]. This representation allows a truncated Volterra
system to be described by a “diagonal” arrangement of
the entries of each one of its kernels. A similar repre-
sentation has been used in [10] to derive the so-called
Filtered-X Affine Projections (AP) algorithm.

3.3 Nonlinear secondary path

The effects on nonlinearities in the secondary path have
been also studied in the literature. ANC systems may
use, in fact, in the secondary paths A/D and D/A con-
verters, power amplifiers, loudspeakers and transducers.
Overdriving the electronics gives rise to nonlinear ef-
fects. An accurate study of the impact of a nonlinearity
in the secondary path has been presented in [11] for the
Filtered-X LMS algorithm. The analysis is limited, how-
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ever, to the presence of a memoryless saturation nonlin-
earity. The analytical and simulation results show that
even a small nonlinearity may significantly affect the
controller behavior.

Nonlinear schemes and nonlinear distortions have
been also considered in the framework of the feedback
schemes. In particular, in [15] a frequency selective
feedback structure has been described. This structure
works essentiallly in the frequency domain and is con-
sidered as nonlinear since signal amplitudes and phases
are adapted in place of the controller coefficients. It is
also confirmed that in active headphone sets, which still
contain microphones, amplifiers and loudspeakers in the
secondary path, nonlinear behaviors have been noticed
[15].

3.4 Nonlinear models for the controller

The presence of nonlinear effects in the source noise,
the primary and secondary paths calls for a nonlinear
controller. The models used in recent contributions can
be grouped in the following categories:

- Neural networks [7, 12, 13, 14].

- Radial basis functions [5].

- Volterra filters [5, 6, 10].

- Frequency selective filters [15].

- Fuzzy systems [16].

4. FILTERED-X ALGORITHMS FOR
MULTICHANNEL ACTIVE NOISE
CONTROLLERS

In this Section we specifically consider truncated
Volterra models and show how the Filtered-X algorithms
for single-channel feedforward schemes can be extended
to multichannel systems.

According to the stochastic gradient approximation,
the classical Filtered-X LMS algorithm for a linear mul-
tichannel system is derived by minimizing the sum of
the squared values of the signals measured by the error
microphones. The final updating relationship for the
FIR filter connecting the input ¢ to the output j of the
controller is given by

hij(n+1) =hij(n) = > prex(n) {sjx(n) *x:(n)} (5)
k=1

where ui, k = 1,..., K, are the step sizes, or adapta-
tion constants, controlling the convergence properties of
the algorithm. In the nonlinear case, the linearity of
the output of a Volterra filter with respect to the kernel
coefficients makes it possible to derive an updating re-
lation which is formally equal to Eq. (5). According to
the diagonal representation [9], the Volterra filter con-
necting the input ¢ to the output j is represented as a
multichannel filter bank. The input to each channel is
formed with appropriate products of input samples ar-
ranged in a vector in order to actually derive the final
updating relation.

The multichannel interpretation of a Volterra fil-
ter has been exploited in [10] to derive the Filtered-X
AP algorithm for a single-channel quadratic controller

and to indicate how this algorithm can be extended
to higher-order kernels. The main difference with re-
spect to the Filtered-X LMS algorithm is that, in ad-
dition to the present one, L — 1 previous errors are
simultaneously considered. In the multichannel case,
a set of k vectors (1 < k < K) of the a priori er-
rors ex(n) = [ex1(n) ex2(n)---exr(n)]? needs to be ex-
ploited. A first extension of the single channel Filtered-
X AP algorithm to a multichannel quadratic controller
can be obtained in the case of a single reference micro-
phone (i = 1). In this case, in fact, the updating terms
can be derived by considering the Ny x L matrices

Gjr(n) = [sjr(n) *x(n) sjp(n—1)xx(n—1)---

sjg(n—L+1)*x(n—L+1)], (6)
where Np = Z(]I\il(N — ¢+ 1) and N is assumed to

be the memory length of the quadratic filters connect-
ing the single input z(n) to each output j of the con-
troller. Within some approximations, the final updating
expression for each channel m, 1 <m < M < N, of the
quadratic filters becomes, for 1 < j < J,

hoj(n+ 1) = hy,j(n)—
K

> kG gio(n) [GH ()G ()] ew(n),  (7)
k=1

where G, ji(n) are submatrices of G (n) of congruent
dimensions. The updating rule requires the inversion of
a set of L x L matrices at any time step. It is worth
remarking that this operation is an affordable task for
low orders of affine projections L. Since there is no space
here to report the specific derivations, they are deferred
to another paper presently in preparation, where the
case of a number of reference microphones greater than
one will be considered, too.

5. SOME SIMULATION RESULTS

As an example, we report in this Section the result of
an experiment involving a multichannel controller with
one input (I = 1), two actuators (J = 2) and two er-
ror microphones (K = 2). The source noise is a logistic
chaotic noise as in Eq. (4) with £(0) = 0.9. The nonlin-
ear process is then normalized in order to have a unit
signal power z(i) = £(i)/o¢. The primary paths are
modeled with two FIR filters and the secondary paths
are described by four non-minimum phase FIR filters.
The system is identified with a second order Volterra
filter with linear and quadratic parts of memory length
10. The quadratic kernel is formed with only two chan-
nels (M = 2), corresponding to the two main diagonals
(m = 1,2) in the diagonal representation. Figure 2 plots
the ensamble average of the mean attenuation at the
error microphones for 50 runs of the simulation system
using the updating rule of Eq. (7). The four curves refer
to different values of the affine projection order L. The
order L = 1 corresponds to a normalized LMS adap-
tation algorithm. In the experiment all the adaptation
constants have been fixed equal to 0.001. For higher or-
ders of affine projections it is evident the improvement
in the convergence behavior of the algorithm.
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Figure 2: Mean attenuation in a multichannel active
noise controller.

6. FUTURE PERSPECTIVES

In this paper, we have first presented the principles of
single- and multichannel active noise control. Then, we
have motivated the use of nonlinear controllers and stud-
ied in particular the realizations based on the Volterra
filters used in feed-forward schemes. Filtered-X LMS
algorithms for linear and Volterra filters have been re-
viewed and extended with particular reference to mul-
tichannel implementations. Filtered-X AP algorithms
have been considered, too. To the knowledge of the Au-
thors, adaptation rules for nonlinear multichannel con-
trollers have not yet been demostrated in the literature.

One of the main problems that requires further in-
vestigations is the complexity of the implementations. A
fast implementation of the multichannel Filtered-X LMS
has been actually proposed in [4] for linear controllers.
For nonlinear controllers, the single-channel Filtered-X
AP algorithm has been shown [10] to be not too ex-
pensive in term of complexity in comparison with the
Filtered-X LMS algorithm. The updating rule requires,
in fact, about L times the number of operations nec-
essary when using the Filtered-X LMS algorithm. On
the other hand, the Filtered-X AP algorithm offers bet-
ter convergence and tracking behaviors. This fact de-
pends on the correlations which are present in the signals
(products of input samples) entering the multichannel
filter bank implementing the Volterra filter even in pres-
ence of not correlated input signals. An open problem
remains the investigation of efficient implementations
for the nonlinear multichannel Filtered-X LMS and AP
algorithms. When using the Volterra models, there are
in fact two multichannel representations, one relative to
the structure of the controller and one relative to the
realization of the Volterra filters, that require to be ef-
ficiently nested together.

Another open problem is the study of ANC methods
when the secondary paths include nonlinearities with
memory. The computation of nonlinear inverse or pseu-
doinverse systems for polynomial filters is thus required.
A recent account on this topic can be found in [8].
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