
TIME-FREQUENCY AND TIME-SCALE CANONICAL REPRESENTATIONS OF
DOUBLY SPREAD CHANNELS

Radu Balan, H. Vincent Poor, Scott Rickard, and Sergio Verdú
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ABSTRACT
A general technique for the generation of canonical channel models
and demonstrate the application of the technique to time-frequency
and time-scale integral kernel operators is developed. As an exam-
ple, the derivation of Sayeed/Aazhang’s time-frequency canonical
channel characterization that forms the basis for the time-frequency
RAKE receiver is shown. Then, a canonical time-scale channel
model for wideband communication is developed.

1. INTRODUCTION

The linear time-varying channel is characterized by the time-
varying impulse response h(t,τ) which denotes the response of the
channel at time t to an impulse at time t − τ . The channel input-
output relationship is

y(t) =
∫

h(t,τ)x(t− τ)dτ. (1)

Taking the Fourier transform of h(t,τ) with respect to the first argu-
ment, we obtain the spreading function S(·,τ) = F{h(·,τ)} which
has channel input-output relationship

y(t) =
∫∫

S(θ ,τ)x(t− τ)e j2πθ tdτdθ . (2)

In [1], Sayeed and Aazhang expanded this channel model to form a
canonical time-frequency channel model

y(t) =
N

∑
n=0

K

∑
k=−K

x
(

t− n
W

)
e j2πkt/T Ŝ

(
k
T

,
n

W

)
(3)

where N, K, W , and T depend on the channel and signal character-
istics. The channel can thus be thought of as combining a discrete
set time delayed and frequency shifted versions on the input sig-
nal. This channel characterization is associated with narrowband
signaling environments.

Our goal in this paper is to develop a similar decomposition for
a channel characterization consistent with wideband signaling,

y(t) =
∫∫

L (a,b)
1√
|a|

x

(
t−b

a

)
dadb, (4)

where L (a,b) is the wideband spreading function.
In Section 2 we review the derivation of the time-frequency

canonical channel model. In Section 3 we restate the channel de-
composition in a general setting. In Section 4 we prove the main
result which allows us to generate canonical channel models. In
Section 5 we revisit the time-frequency model and use the thereom
to determine the decomposition. Finally, in Section 6 we derive the
decomposition for the time-scale canonical channel model.
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2. CANONICAL TIME-FREQUENCY MODEL

We begin with the derivation of the canonical model associated with
the standard RAKE receiver. The classic expression of the sampling
theorem for a signal X(ν) with support (−W/2,W/2) is

x(t) =
∞

∑
n=−∞

x
( n

W

) sin
(
πW

(
t− n

W

))
πW

(
t− n

W

) . (5)

An alternative formulation of the sampling theorem from [2] is

x(t− τ) =
∞

∑
n=−∞

x
(

t− n
W

) sin
(
πW

(
τ − n

W

))
πW

(
τ − n

W

) . (6)

Following [2], substituting (6) into the time-varying impulse re-
sponse channel characterization (1), we obtain

y(t) =
∫

h(t,τ)x(t− τ)dτ (7a)

=
∞

∑
n=−∞

x
(

t− n
W

)[∫
h(t,τ)

sin
(
πW

(
τ − n

W

))
πW

(
τ − n

W

) dτ

]
︸ ︷︷ ︸

=hn(t)

(7b)

≈
L:=dTm/We

∑
n=0

x
(

t− n
W

)
hn(t) (7c)

where the approximation is made based on the assumption that
the channel is causal and has finite multipath spread, Tm. That is,
h(t,τ) = 0,∀τ < 0,τ > Tm. Under this assumption, the approxima-
tion (7c) corresponds to hn(t) for which the mainlobe of the sinc
function overlaps with the support of the time-varying impulse re-
sponse. The tapped-delay line in (7c) forms the basis for the classic
RAKE receiver, where each of the hn(t) are usually assumed to be
independent.

Now, we move to the Time-Frequency RAKE which was origi-
nally derived in [1]. Alternative, but similar models are explored in
[3, 4, 5]. The path we take in this derivation is essentially the same
as that in [1]. We look at only the (0,T ) portion of the received
waveform, that is, y(t)1(0,T )(t). Starting from (7b), we insert the

(0,T ) portion assumption and obtain

y(t)1(0,T )(t) =
∞

∑
n=−∞

x
(

t− n
W

)[∫
h(t,τ)1(0,T )(t)sinc

(
W
(

τ − n
W

))
dτ

]
(8)

Now we expand the h(t,τ)1(0,T )(t) term as a Fourier series,

h(t,τ)1(0,T )(t) =
∞

∑
k=−∞

1
T

[∫ T

0
h(t ′,τ)e− j2πkt ′/T dt ′

]
e j2πkt/T (9a)

=
∞

∑
k=−∞

1
T

[∫ ∞

−∞
h(t ′,τ)1(0,T )(t

′)e− j2πkt ′/T dt ′
]

︸ ︷︷ ︸∫ ∞
−∞ S(θ ,τ)T sinc(( k

T −θ)T)e− jπ(k−T θ)dθ

e j2πkt/T (9b)
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which is valid for t ∈ (0,T ).
Plugging (9b) into (8) we obtain,

y(t) =
∞

∑
n=−∞

∞

∑
k=−∞

x
(

t− n
W

)
e j2πkt/T Ŝ

(
k
T

,
n

W

)
(10)

where,

Ŝ(θ ,τ) :=∫∫
S(θ ′,τ ′)sinc

((
τ − τ

′)W
)

sinc
((

θ −θ
′)T
)

e− jπ(θ−θ ′)T dθ
′dτ

′

(11)

(10) is valid for the (0,T ) received portion of bandlimited signals.
Under the path scatterer interpretation we assume that the

channel introduces a maximum delay spread of Tm and maximum
Doppler spread of Bd , that is, S(θ ,τ) has support in (−Bd ,Bd)×
(0,Tm). In the smoothed version of S(θ ,τ) in (11), if we consider
only the terms in (10) where the mainlobe of the smoothing ker-
nel (which has size (−1/T,1/T )-by-(−1/W,1/W )) overlaps with
the support of S(θ ,τ), we need only sum over n = 0, . . . ,N where
N = dWTme and k =−K, . . . ,K where K = dT Bde. We thus obtain
the canonical representation of the time-frequency channel model,

y(t) =
dWTme

∑
n=0

dT Bde

∑
k=−dT Bde

x
(

t− n
W

)
e j2πkt/T Ŝ

(
k
T

,
n

W

)
(12)

3. RESTATEMENT

The double sum time-frequency channel formulation (10) was ob-
tained by assuming,
• the input signal is bandpass with bandwidth W , and
• the output signal is analyzed only for t ∈ (0,T ).

With these assumptions in mind, we define the following two pro-
jection operators,

PT x(t) ·=1[0,T ](t)x(t) (13)

and,
QW x(t) ·=F−1{1[−W/2,W/2](ω)F{x(t)}(ω)}, (14)

and using the following two operators, translation operator,

Tτ x(t) ·=x(t− τ), (15)

and modulation operator,

Mν x(t) ·=x(t)e j2πνt , (16)

we can rewrite (10) as,

PT NSQW = ∑
m,n

cm,nPT Mm
1
T

T n
1

W
QW (17)

where the cm,n = Ŝ
(m

T , n
W

)
and NS is the narrowband channel op-

erator,

NS{x}(t) ·=
∫∫

S(θ ,τ)x(t− τ)e j2πθ tdτdθ . (18)

Restating the channel operator in this setting, we can ask what gen-
eral properties of the operators allow us to express the channel oper-
ator as a double summation of transformed input waveforms. In the
next section, we determine properties of the operators used in the
expansion that are sufficient conditions for the existence of such an
expansion. Our goal is to develop an analogous time-scale canoni-
cal channel model. That is, in Section 6 we propose projections P
and Q such that,

PWLQ = ∑
m,n

cm,nPDm
a0

T n
t0

Q (19)

for some choice of dilation and translation spacing parameters (a0
and t0), where the cm,n depend on L , and D is the dilation operator,

Dax(t) ·=
1√
|a|

x
( t

a

)
, (20)

for the wideband channel operator,

WL {x}(t) ·=
∫∫

L (a,b)
1√
|a|

x

(
t−b

a

)
dadb. (21)

4. GENERALIZATION

For the statement of the general theorem, we require the following
definition.

Definition 1 (paired-up operators). P and U are paired-up oper-
ators with generator e0 iff,

1. P is an orthogonal projection in L2(R)
2. U is unitary in L2(R)
3. PU = UP
4. ∃e0 ∈ RanP s.t.{Ume0 : m ∈ Z} is an orthonormal basis for

RanP

Using two different pairs of paired-up operators, the following
theorem gives a sufficient condition for the channel expansion.

Theorem 1. If (P,U) and (Q,V ) are both paired-up operators with
generator elements e0 and f0 respectively, H is a bounded operator,
and ∃cm,n such that

∑
m,n

cm,n

〈
V n+k f0,U

l−me0

〉
=
〈

HV k f0,U
le0

〉
, ∀k, l, (22)

then,

PHQ = P

(
∑
m,n

cm,nUmV n

)
Q (23)

Proof. First we expand out PQ using the orthonormal basis and uni-
tary properties of the paired-up operators,

P = ∑
m

〈
·,Ume0

〉
Ume0 (24)

and
Q = ∑

n

〈
·,V n f0

〉
V n f0, (25)

we derive,

PQx = ∑
m

〈
Qx,Ume0

〉
Ume0 (26a)

= ∑
m

〈
∑
n

〈
x,V n f0

〉
V n f0,U

me0

〉
Ume0 (26b)

= ∑
m,n

〈
x,V n f0

〉〈
V n f0,U

me0

〉
Ume0. (26c)

We use this to determine,

P

(
∑
m,n

cm,nUmV n

)
Qx = ∑

m,n
cm,nUmPQV nx (27a)

= ∑
m,n

cm,nUm

(
∑
k,l

〈
V l f0,U

ke0

〉〈
V nx,V l f0

〉
Uke0

)
(27b)

= ∑
m,n,k,l

cm,n

〈
V l f0,U

ke0

〉〈
x,V−nV l f0

〉
UmUke0 (27c)

= ∑
u,s

(
∑
m,n

cm,n
〈
V n+u f0,U

s−me0

〉)〈
x,V u f0

〉
U se0 (27d)
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where the commuting property of paired-up operators was used in
(27a), (26c) was used in moving from (27a) to (27b), and the uni-
tary property of V was used in moving from (27b) to (27c). Now,
looking to the LHS of (23), we use expand using the orthonormal
basis and obtain,

PHQx = ∑
s

〈
HQx,U se0

〉
U se0 (28a)

= ∑
s

〈
H

(
∑
u

〈
x,V u f0

〉
V u f0

)
,U se0

〉
U se0 (28b)

= ∑
s,u

〈
x,V u f0

〉〈
HV u f0,U

se0

〉
U se0 (28c)

= ∑
u,s

hu,s
〈
x,V u f0

〉
U se0. (28d)

Given H, we then compute,

hu,s
·=
〈
HV u f0,U

se0

〉
(29)

which we use to solve,

∑
m,n

cm,n
〈
V n+u f0,U

s−me0

〉
= hu,s, ∀u,s (30)

for cm,n. These cm,n satisfy (23).

4.1 Solving the coefficient equation

We now discuss the form of the solution to (22). We define

ak,l
·=
〈

V k f0,U
le0

〉
(31)

and define
c̃m,n

·=cn,−m (32)

which allows us to express (22) as,

hu,s = ∑
m,n

cm,n
〈
V n+u f0,U

s−me0

〉
(33a)

= ∑
m,n

〈
V u−n f0,U

s−me0

〉
c̃n,m (33b)

= (a? c̃)u,s (33c)

where
(a? c̃)u,s

·= ∑
k,l

au−k,s−l c̃k,l = ∑
k,l

ak,l c̃u−k,s−l (34)

Expressing h, a, and c̃ in the Z-transform domain,

A(z1,z2)
·= ∑k,l zk

1zl
2ak,l = ∑

k,l
zk

1zl
2

〈
V k f0,U

le0

〉
(35)

H(z1,z2)
·= ∑k,l zk

1zl
2hk,l = ∑

k,l
zk

1zl
2

〈
HV k f0,U

le0

〉
(36)

C̃(z1,z2)
·= ∑k,l zk

1zl
2c̃k,l (37)

we can write (33c) as,
H = AC̃ (38)

and solve for C̃

C̃(z1,z2) =
H(z1,z2)
A(z1,z2)

. (39)

In terms of cm,n, this is,

cm,n = Z−1
(

H(z1,z2)
A(z1,z2)

)
−n,m

(40)

where

Z−1 (F(z1,z2)
)

m,n =∫ 1

0
dθ1

∫ 1

0
dθ2e− j2πθ1me− j2πθ2nF

(
e j2πθ1 ,e j2πθ2

)
(41)

We can express (40) as a convolution of coefficients by defining

Â(e j2πθ1 ,e j2πθ2) ·=
1

A(e j2πθ1 ,e j2πθ2)
(42)

and

âm,n
·=
∫ 1

0
dθ1

∫ 1

0
dθ2e− j2πθ1me− j2πθ2nÂ

(
e j2πθ1 ,e j2πθ2

)
, (43)

and we can obtain the cm,n using

cm,n = c̃−n,m = (â?h)n,−m. (44)

We will use (44) to determine the coefficients in practice.

4.2 Coefficient calculation

Thus, to calculate the coefficients cm,n,
1. calculate hk,l via (29),
2. calculate am,n via (31),

3. use am,n to obtain A(e j2πθ1 ,e j2πθ2) via (35),

4. use A(e j2πθ1 ,e j2πθ2) to obtain âm,n vua (42) and (43), and
5. use hk,l and âm,n to obtain cm,n via (44).

5. REVISITING TIME-FREQUENCY

The example we have seen so far of the application of this theorem
had,
• (P,U,e0) = (PT ,M 1

T
, 1√

T
1[0,T ](t))

• (Q,V, f0) = (QW ,T 1
W

,
√

W sinc(Wt))

for the operator H = NS of the form,

Hx(t) =
∫∫

S(θ ,τ)e j2πθ tx(t− τ)dθdτ. (45)

Modulation and translation operators were a natural fit with our
channel description, NS, which describes the channel as a (continu-
ous) summation of time and frequency shifts of the input signal. We
highlight only the results of the calculations listed in Section 4.2.
For more detailed steps, consult [6].

hk,l =

√
W
T

∫∫∫
dθdτdt1[0,T ](t)e

j2πt(θ− l
T )sinc(Wt−k−Wτ)S(θ ,τ)

(46)

am,n =

√
W
T

∫ T

0
e− j2π

nt
T sinc(Wt−m)dt (47)

For θ1,θ2 ∈ [0,1],

A(e j2πθ1 ,e j2πθ2)=
{ √

WT e j2πWT θ1θ2 : θ1 ∈
(
0, 1

2

)
√

WT e j2πWT (θ1−1)θ2 : θ1 ∈
( 1

2 ,1
)
(48)

âm,n =
1√
WT

∫ 1

0
dθ2e− j2πθ2nsinc(WT θ2 +m) =

1
WT

a−m,n (49)

cm,n =
∫∫

S(θ ,τ)e jπ(T θ+m)sinc(T θ +m)sinc(n+Wτ)dθdτ (50)

which are precisely the coefficients in (12).
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6. TIME-SCALE CANONICAL MODEL

We now develop the time-scale canonical characterization. For
other possible extensions to time-scale, see the approach in [7], [8],
and [9] using wavelet packet modulation.

6.1 The scale projection

We use the following projection operator in scale space,

P = R−1
1

(
1[

0, 1
lna0

]⊕0

)
R1 (51)

where,
R1

·= (F ⊕F )R (52)

where,

R1 : x
R→
(

x1
x2

)
F⊕F−→

(
X1
X2

)
(53)

for,
x1(t) = e

t
2 x(et) x2(t) = e

t
2 x(−et) (54)

and,

R−1
1 :

(
X1
X2

)
F−1⊕F−1

−→
(

x1
x2

)
R−1

→ x (55)

x(t) =
1√
|t|

(
x1(ln(t))1(0,∞) + x2(ln(−t))1(−∞,0)

)
(56)

where, x,x1,x2,X1,X2 ∈ L2(R).

6.2 The scale generator

Using the characteristic function in scale space (Ω1,Ω2), Ω1 =[
− 1

2lna0
, 1

2lna0

]
, Ω2 = /0, leads to the generator,

e0(t) =

{
1√
lna0

1√
t
sinc

(
ln |t|
lna0

)
: t > 0

0 : t < 0
(57)

It can be shown that (P,U,e0) = (R−1
1

(
1
[0, 1

lna0
]
⊕0

)
R1,Da0

,e0)

are paired-up.

6.3 Time-scale paired-up operators

For the time-scale model, we use the following paired-up operators,

• (P,U,e0) = (R−1
1

(
1
[0, 1

lna0
]
⊕0

)
R1,Da0

,e0(t) from (57))

• (Q,V, f0) = (Q 1
t0

,Tt0
, 1√

t0
sinc( t

t0
))

to decompose the wideband channel corresponding to the operator
H = WL of the form,

Hx(t) =
∫∫

L (a,b)
1√
|a|

x

(
t−b

a

)
dadb (58)

into a discrete double summation,

PWLQ = ∑
m,n

cm,nPDm
a0

T n
t0

Q. (59)

Again, we highlight only the results of the calculations for the steps
in Section 4.2. For more details, consult [6].

hu,s =
1√

t0 lna0

∫
da√
|a|

∫
dbL (a,b)

∫ ∞

0
dt

1√
t
sinc

(
t−b
at0

−u

)
sinc

(
ln t

lna0
− s

)
(60)

am,n =

√
1

t0 lna0

∫ ∞

0

1√
t
sinc

(
t
t0
−m

)
sinc

(
ln |t|
lna0

−n

)
dt (61)

For θ1,θ2 ∈
[
− 1

2 , 1
2

]
, in distributional sense,

A(θ1,θ2) =

√
1

t0 lna0
t

1
2 + j2π

θ2
lna0

0

∫ ∞

0
t
− 1

2 + j2π
θ2

lna0 e j2πθ1tdt (62)

âm,n =
√

lna0

∫ 1
2

− 1
2

∫ 1
2

− 1
2

dθ1dθ2

t
− j2π

θ2
lna0

0
e− j2πθ1me− j2πθ2n

∫ ∞
0 t

− 1
2 + j2π

θ2
lna0 e j2πθ1tdt

(63)

cm,n =
∫∫

dadbL (a,b)sinc

(
n− b

at0

)
sinc

(
ln(a)
lna0

−m

)
(64)

The canonical time-scale model is then,

y(t) = ∑
m,n

cm,n

am/2
x

(
t−nbam

am

)
(65)

for the cm,n defined in (64).

7. SUMMARY

Both time-frequency and time-scale integral kernel operators are of-
ten used to model time-varying communication channels. Sayeed
and Aazhang have developed a canonical time-frequency represen-
tation of the doubly spread channel which has proved useful for the
exploitation of the diversity of such channels. We developed a gen-
eralization of this canonical model and showed their time-frequency
canonical model as an application of this generalization, which was
also applied in a time-scale setting to derive a time-scale canonical
description of the channel. We hope that further study of this time-
scale description will yield similar benefits for wideband signals
that Sayeed and Aazhang demonstrated in the narrowband setting.
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