
FPGA IMPLEMENTATIONS OF SORTERS FOR NON-LINEAR FILTERS

Boaz Hirschl and Leonid P. Yaroslavsky
Tel-Aviv University, Faculty of Engineering, Dept. of Interdisciplinary Studies, Tel Aviv 69978, Israel

phone: +972 09 8942534, fax: +972 9 9611441, email: Email: boaz.hirschl@intel.com

ABSTRACT
Nonlinear filters for image processing have attracted consid-
erable interest due to their ability to preserve edges, denoise
images and to their potential for image enhancement and
segmentation. One of the basic operations in nonlinear filter-
ing is sorting data from a 2-D sliding window. In this paper
we propose a novel approach to hardware FPGA implemen-
tation of data sorting, suggest three implementations and
compare them.

1. INTRODUCTION

Nonlinear filters constitute a wide family of filters with
proven capabilities in image denoising, enhancement and
segmentation [1]- [3]. The filters work in a sliding window
and generate an estimate of the window central pixel by
applying certain estimation operations to a subset of the
window pixels. This subset is referred to as the central
pixel’s neighbourhood [2].
One of the fundamental operations involved in non-liner
filtering is data sorting. Numerous methods have been sug-
gested for both software and hardware implementation of
the sorting operation. The suggested architectures can be
divided into two types: parallel and serial. Parallel sorters
receive, in a parallel form, a vector of data and produce,
after some processing time, the sorted output vector. These
sorters are suitable for “off line” processing of the images,
which are stored in memory. In [4] a very large scale inte-
gration (VLSI) column sort architecture in which a sorter
based on matrix of inputs and outputs with selection switch-
ing points is implemented to sort columns. This solution is
compact, fast but supports a limited number of items.
In our approach to parallel processing, the rank of each
number is calculated [2]. This results in a rank vector and
enables easy extraction of any order statistics such as Min,
Max, and Median values. To implement this approach, two
stages of logic calculate each number’s rank. The first stage
is either comparator or adder and the second stage is adder.
The architecture is compact in terms of silicon resources.
Serial sorters receive the data, one number or bit after the
other. The serial sorters are well suited for real-time image
capturing and transmission when the processor is a part of
the data stream. In [5], a serial sorting architecture of
odd/even transpose is suggested. In [6] a serial rank calcula-
tion is performed in order to convert input value to its rank.
These sorters are recursive by their nature and each output
vector is computed using previously computed vectors. A
hybrid approach uses both serial and parallel architecture. A

hybrid sorter combining a serial software sorter and parallel
hardware architectures is evaluated in [7].
The architectures discussed in the paper, sorters of N ele-
ments vector where nnN �� and n is the window size. In an
actual application a pre-processor will arrange the two-
dimensional window into the input vector. The size of the
vector can vary in a wide range limited only by silicon area.
Serial sorters use a First In First Out (FIFO) buffers. Two
FIFO algorithms are discussed. Serial FIFO sorter uses the
magnitude attribute to insert each new pixel into its correct
place. On the same cycle, during the complementing phase,
the oldest pixel leaves the sorted array. A second implemen-
tation is a serial rank computer where each pixel that enters
the array causes all the other pixel rank attributes to be up-
dated. In a similar fashion, the pixel, which is leaving,
causes all the pixel rank attributes to be re-adjusted. This is
an improvement of the system suggested in [6].
In the work, VHDL sorter generator software was developed
and used to generate the sorter’s VHDL files with variable
window size. The WebPACK ISE 5.1.03i by Xilinx Soft-
ware Solutions was used for synthesis and implementation.
The ModelSim SE/EE PLUS 5.4e by Model Technology
along with Matlab by Mathworks was used for simulation
and verification.

2. PARALLEL RANK COMPUTER (PRC)

The rank computer receives, in a parallel fashion, a vector of
N numbers and produces their ranks in two clock cycles. By
comparing every pair of numbers and summing the com-
parison values the rank of each number is calculated. Every
pair of numbers is computed and the result is hard limited to

1� using a look-up table (LUT). All these results difference
between, are accumulated in accordance with the index of
the rank computed as is illustrated in Figure 1.

Q

QSET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

�

�

�

�

�

�

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

Q
SET

CLR

D

Value Rankout
in

out
in

out
in

out
in

out
in

out
in

AdderAdder

(-1)

(-1)

(-1) (-1)

(-1)

LUT

1

2

3

1-2

2-3

1-3

0

0

0

1

1

1

1

2

0

541

Figure 1: A Rank Computer for Three Numbers
For the first element of the vector of elements, all the pairs
that include the index ‘1’ subtractions (‘1-2’,’1 -3’) values
are hard limited and accumulated giving the result of the
elements rank.
Hardware optimizing is shown in Figure 2 where, instead of
adders, comparators are used. This implementation utilizes
specific comparator cells that reside in the FPGA and their
one-bit outputs.

Q

QS E T

C L R

D

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

1

3

2

Q

QS E T

C L R

D

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

>

�

�

�

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

Q

QS E T

C L R

D

Va lue R ankAdderCom para to r

>

>
1

0

0

0

1

1

0

0

0

0 1

2

0

Figure 2: Optimized Rank Computer
In the second stage of the sorter, the adder is a simple adder
that sums the comparators results and outputs the rank.
The adder size depends on the number of elements N while
latency is always two clock cycles.

3. SERIAL FIFO SORTER (SFS)

A First In First Out (FIFO) store input vector data in the
order that it is received. The Serial FIFO Sorter (SFS) is
different from regular FIFO in a way that the input vector
data is ordered by its magnitude, still this data leave the
sorter in a FIFO way. At each clock cycle, one number en-
ters its place in the sorter according to its value; on the same
clock cycle, one number leaves the sorter. In Figure 3 b),
when the number 5 enters the sorter from the left in the first
phase of the clock, a shift to the right takes place. In Figure
3 c) in the second phase of the clock, when ‘0’ leaves the
FIFO, the numbers are shifted back to the left.

0 1 9

0 1 5

1 5 9

1 3 5

-

9

-

9

9

1 5 9

5 9

a)

b)

c)

d)

 7 3 5 1 9 0

 7 3 5 1 9 0

 7 3 5 1 9 0

 7 3 5 1 9 0

O v e r f l o w c e l l

N u m b e r I n

C l o c k
F I F O

C l o c k

C l o c k

C l o c k

S h i f t r i g h t , 5 I n

S h i f t le f t , 0 O u t

S h i f t r ig h t , 3 I n

S F S

S a m p l i n g t i m e
C u r r e n t t im e

d) 3 e n t e r s t h e s o r t e r

a) a t t h e i n i t i a l s t a t e t h e s o r t e r i s f i l l e d w i t h [0 , 1 , 9]

c) 0 l e a v e s t h e s o r t e
b) 5 e n t e r s t h e s o r t e r

Figure 3: An example of a Serial FIFO Sorter
The sorter consists of two levels of memory elements to
enable it to operate in one clock cycle. These two memory

arrays, which work on the first and second phases of the
clock respectively, are labeled “sorted vector” and “shadow
sorted vector”. Each memory element stores both the value
and the “age” of the number. The term “age” describes the
order in which a number entered the FIFO. When a number
enter the FIFO its age is one, each clock cycle the age is
increased by one. When the age value is equal to the FIFO
size the number should leave the FIFO and this value equal
to the FIFO size is referred to as “retirement age”. The FIFO
first out action is determined by the age attribute.
The implementation of this sorter is based on a cell that in-
cludes memory elements: main and shadow ones and some
logic elements to support the sort and shift operations. A
schematic diagram of the sorter basic cell is shown in Figure
4.The upper part is the main sort vector cell and the lower
part is the shadow vector cell. In the first phase of the clock,
the upper logic selects which value to transfer (A_out) to the
lower part: the cell value, the new number in (B_in) or the
number to the left of the cell (An-1, a shift right operation).
The main selector behavior is described by the formula:

=
nAB �nA

1,
�

�� nn ABABO utA _
B

1�nA

1,
�

�� nn ABAB

In the second phase, the lower logic selects which number
(C_out) to transfer up, either the number in the cell or the
number to the right (a shift left operation). The decision is
based on the following rules: if the cell age reached the re-
tirement age then the number to the right � �1�nC is shifted
out. If a number was retired then again, the number to the
right is shifted out; otherwise the current number is shifted
out. The shadow selector behaves is described by the for-
mula:

=

falsereteireAgeAge nretirementn ��
�1&nC

OutC _ retirementn AgeAge �1�nC
1�nC truereteiren �

�1

The cells allow shift in both directions.

C n /
A g e

A n /
A g e

B>A
B P i x e l I n

BPixelIn

A n - 1 / A g e

B > A n - 1 B > A n

A n / A g e

A g e
=

R e t i r e
_ n - 1

C n + 1C n

R e t i r e
_ n

M a i n e l e m e n t

S h a d o w e l e m e n t

F . F .

m u x

m u x

m u x

F . F .

A _ O u t

C _ O u t

A g e + +

Figure 4: Serial FIFO Sorter Basic Cells

542

4. SERIAL RANK COMPUTER (SRC)

A serial rank computer (SRC) operates on a FIFO basis that
includes two attributes: value and rank. The algorithm of the
implementation is based on [6]. The SRC FIFO numbers are
arranged according to their arrival sequence accompanying
each number with its calculated rank, this is unlike SFS that
order the numbers in the memory array according to their
value. In Figure 5 we see the basic memory element that
stores value and rank. In this example, the FIFO serial rank
operator starts with [‘1’,’9’,’0’] and the respective ranks
[‘1’,’2’,’0’]. As the numbers enter the array and leave the
array of the sorter, the ranks are updated every clock cycle.

V a l u e

R a n k

a)

b)

c)

 7 3 5 1 9 0

 7 3 5 1 9 0

 7 3 5 1 9 0

1
2

9
3

0
1

5
2

1
1

9
3

3
2

5
3

1
1

B a s i c m e m o r y e l e m e n t

C l o c k

C l o c k

C l o c k

N u m b e r I n

F I F O
S a m p l i n g t i m e
C u r r e n t t im e

a) a t t h e i n i t i a l s t a t e t h e s o r t e r i s f i l l e d w i t h [1 , 9 , 0] w i t h

c) 3 e n t e r s t h e s o r t e r , 9 l e a v e s t h e s o r t e r .
b) 5 e n t e r s t h e s o r t e r , 0 l e a v e s .

t h e f o l l o w i n g r a n k [2 , 3 ,1]

S R C

Figure 5: Example of 3 Number Rank Sorter
A group of rank cells forms the rank computer. The first
rank cell calculates its rank by summing the results of the
comparison of the new value to all the values in the sorter.
The other rank cells compare their value to the new number
and the oldest number that leaves the FIFO and adjust their
rank accordingly.

B _IN

A n /
R ankn

R
ankn

A n /R ank n

A 0<B _ In
A 1<B _ In

A n<B _In

F irs t R ank C e ll

A
D
D
E
R

F lip -F lop

… .

Figure 6: First Rank Cell
The first rank is created by summation of all the compari-
sons.
The other rank cells calculate their rank as follows:

=

Lastn RankRank ��1�� nn RankRank

nRank
nin AB �

nRank ninLastn ABRankRank �� ,
1�� nn RankRank

This implementation includes (B_in) and the last cell rank
(last_rank) inputs which are compared with the current cell

and are used to control the adder and subtract shown in
Figure 7.

A n - 1 / R a n k n - 1

A n /
R a n k n

B > A

- 1 A > = L

+ 1

L a s t R a n k i n

R
ankn

R a n k n

A n / R a n k n

A n

A n < B _ I n

R a n k C e l l

B _ I n

F l i p - F l o p

C o m p a r a t o r

C o m p a r a t o r

S u b t r a c t o r

A d d e r

Figure 7: Rank Cell

5. EXPERIMENTAL RESULTS AND ANALYSIS

This section describes the results of the different experi-
ments with the three architectures on Xilinx VirtexE devices
for different window sizes. The following acronyms will be
used.
SFS – Serial FIFO Sorter
PRC – Parallel Rank Computer
SRC – Serial Rank Computer
The benchmarks we examine are performance, speed, area,
power and latency. The speed is measured in MHz and is
dependent on the maximum delay between two state ele-
ments or one state element and Input/Output pin. Some of
the speed results are normalized to the slowest implementa-
tion. The area is measured in FF numbers, LUT numbers
and equivalent number of gates. The power is a function of
area, frequency and activity factor. The latency is dependent
on the architecture of the algorithm and can be constant for
an algorithm or vary with different window sizes.
�� Speed Analysis

The sorter’s speed varies from 100Mhz to 200Mhz. For ref-
erence, an 8-bit counter that creates the data-sorted valid
signal works at 300Mhz. The sorting speed is not a function
of the window size. The speed comparison is presented in
Table 1: for windows of up to 7x7.

Algorithm Speed
Serial FIFO Sorter (SFS) 1.2

Parallel Rank Computer (PRC) 1.66

Serial Rank Computer (SRC) 1

Table 1. Algorithm Speed Comparison. Speed unit is 96Mhz
The parallel algorithms are the fastest. The serial sorter is
designed to sort in one clock cycle using both phases of the
clock but the complexity of its cells causes more delays. The
SRC is the most complex and therefore has the slowest ar-
chitecture.
�� Area Analysis

 The parameters that are obtained in the experiments are the
number of FF, LUT and of gate equivalents. Table 2 shows
the area for a 5x5 filter. We see that the SRC suggested in
this paper is the most compact algorithm. The serial algo-

543

rithms, both the SFS and the SRC, are quite compact. The
PRC is compact and can compete with the serial algorithms.
Table 2: Algorithms Area for 5x5 Window

 FF LUT Gates
SFS 700 1875 18362

PRC 450 3270 31547

SRC 408 1302 14488

Table 3 shows the required number of FF, LUT and gates
per one window number.
Table 3: Algorithms Area Comparison

 FF LUT Gates
SFS)28(NO)70(NO)710(NO

PRC
� �)22

2
(NLOGN

N
O �

�
�

�

�

�
�

�

�

)
2

8(2NNNO ���

�
��

�

)160(2NO

SRC)16(NO)52(NO)582(NO

The SFS consumes 28 FF per number (8 bits for value and 6
bits for age (for 64�N) in two cells - main and shadow ones,
8 x 2 + 6 x 2 = 28). The PRC consumes � �)(2log

2
NN

��
�

�
�
�

� FF for

each number. (�
�

�
�
�

�

2
N for the number of pair comparators

and � �)(log2 N for the rank FF at the rank adders). The SRC
consumes 8 FFs for rank and 8 FFs for value. The silicon
area required by the algorithms is dominated by two issues,
logic and routing resources. The logic includes the LUTs
and the FFs. Routing includes the internal metal connection
between different logic elements and the pins connecting the
FPGA to the outer world.
For FIFO-type algorithms, the pin number and routing re-
sources are minimal and the bottleneck is the number of FFs
and LUTs.
In terms of FFs and LUTs FIFO-type algorithms linearly
depends on the size of the vector processed. The parallel
sorter number of FFs and LUTs increases in square ratio.
�� Latency Analysis

As a part of the validation suite a valid signal is created. The
valid time is equal to the latency. Each algorithm implemen-
tation was accompanied with a counter that created this
valid signal to enable verification. The counter value was
calculated in the generation script and hard coded into the
VHDL files.
The serial algorithms latency is proportional to the number
of stages in the FIFO. The parallel rank computer has a
fixed latency of two clock cycles.
�� Power Analysis

The power consumed by the FPGA is divided into static and
dynamic power consumption. Static power consummation
is caused by a current leakage on the devices and can be

found in the data sheet for the VIRTEX family. Switching of
transistors causes dynamic power consumption. Activity
factor (AF) is a parameter that describes what percentage of
the device is working in an average clock cycle. The algo-
rithm’s AF in most cases is 1 since the whole device is
working all the time. The serial FIFO sorter works twice in
each clock cycle but in each phase of the clock only half of
the cell functions there fore the SFS AF is 2.

6. CONCLUSIONS

Three modifications of FPGA implementations of sorters for
non-linear filters are suggested in this paper:
�� Parallel Rank Computer
�� Serial FIFO Sorter
�� Serial FIFO Rank Computer.

The implementations are compared in terms of:
speed, area, latency and power.
It follows from the analysis that the speed differences are
not high and the main issue is the FPGA device speed.
The serial rank computer is the slowest and the simplest.
The serial sorter is the middle in terms of size and speed.
The parallel rank computer is the fastest implementation.
The latency and size are linearly dependent on the window

size for the serial algorithms. The size is)log(
2

2
NNN

� pro-

portional to the window size in parallel algorithms. The par-
allel rank computer produces results in a small, fixed num-
ber of clock cycles. The power consumption is mainly a
function of size and the parallel rank computer is the worst
in this parameter. Advanced FPGA can sort parallel a 7 x 7
window at 200 MHz, which is about 10 times faster than the
2Ghz Pentium CPU. The work offer building blocks for
non-liner filter set.

REFERENCES
[1] J. Astola, P. Kuosmanen, Fundamentals of Nonlinear Digital

Processing, CRC Press, Boca Raton, N.Y., 1997
[2] L. Yaroslavsky, Nonlinear Filters for Image Processing in

Neuromorphic Parallel Networks, Optical Memory and Neu-
ral Networks, vol. 12, No. 1, 2003

[3] L. Yaroslavsky, Digital Holography and Digital Image Proc-
essing, Kluwer scientific publications, Boston, 2003, ch.12.

[4] R. Lin, S.Olariu, “Efficient VLSI Architecture for column
sort”. IEEE Transactions on VLSI system Vol 7, NO 1,
March 1999.

[5] C. Hennind, T. G. Noll, “Architecture And Implementation
Of BitSerial Sorter For Weighted Median Filter”. Custom In-
tegrated Circuits Conference, Proceedings of the IEEE 1998,
pg 189–192, University Of Technology RWTH Aachen,
Germany.

[6] L.Lin, G.B. Adams II, E.J. Coyle, “Input Compression and
Efficient Algorithms and Architectures for Stack filters”.
IEEE proc. Winter Workshop on non linear digital signal
processing, Tempere Finland pp.5.2-5 Jan 1993

[7] M. Bednara, O. Beyer, J. Teich, R. Wanka, “Tradeoff Analy-
sis And Architecture Design Of Hybrid Hardware/Software
Sorter”, Application-Specific Systems, Architectures, and
Processors, 2000. Proceedings., 10-12 July 2000 pg 299 –
308.

544

	Index
	EUSIPCO 2004 Home Page
	Conference Info
	Exhibition
	Welcome message
	Venue access
	Special issues
	Social programme
	On-site activities
	Committees
	Sponsors

	Sessions
	Tuesday 7.9.2004
	TueAmPS1-Coding and Signal Processing for Multiple-Ante ...
	TueAmSS1-Applications of Acoustic Echo Control
	TueAmOR1-Blind Equalization
	TueAmOR2-Image Pyramids and Wavelets
	TueAmOR3-Nonlinear Signals and Systems
	TueAmOR4-Signal Reconstruction
	TueAmPO1-Filter Design
	TueAmPO2-Multiuser and CDMA Communications
	TuePmSS1-Large Random Matrices in Digital Communication ...
	TuePmSS2-Algebraic Methods for Blind Signal Separation ...
	TuePmOR1-Detection
	TuePmOR2-Image Processing and Transmission
	TuePmOR3-Motion Estimation and Object Tracking
	TuePmPO1-Signal Processing Techniques
	TuePmPO2-Speech, Speaker, and Emotion Recognition
	TuePmSS3-Statistical Shape Analysis and Modelling
	TuePmOR4-Source Separation
	TuePmOR5-Adaptive Algorithms for Echo Compensation
	TuePmOR6-Multidimensional Systems and Signal Processing
	TuePmPO3-Channel Estimation, Equalization, and Modellin ...
	TuePmPO4-Image Restoration, Noise Removal, and Deblur

	Wednesday 8.9.2004
	WedAmPS1-Brain-Computer Interface - State of the Art an ...
	WedAmSS1-Performance Limits and Signal Design for MIMO ...
	WedAmOR1-Signal Processing Implementations and Applicat ...
	WedAmOR2-Continuous Speech Recognition
	WedAmOR3-Image Filtering and Enhancement
	WedAmOR4-Machine Learning for Signal Processing
	WedAmPO1-Parameter Estimation: Methods and Applications
	WedAmPO2-Video Coding and Multimedia Communications
	WedAmSS2-Prototyping for MIMO Systems
	WedAmOR5-Adaptive Filters I
	WedAmOR6-Speech Analysis
	WedAmOR7-Pattern Recognition, Classification, and Featu ...
	WedAmOR8-Signal Processing Applications in Geophysics a ...
	WedAmPO3-Statistical Signal and Array Processing
	WedAmPO4-Signal Processing Algorithms for Communication ...
	WedPmSS1-Monte Carlo Methods for Signal Processing
	WedPmSS2-Robust Transmission of Multimedia Content
	WedPmOR1-Carrier and Phase Recovery
	WedPmOR2-Active Noise Control
	WedPmOR3-Image Segmentation
	WedPmPO1-Design, Implementation, and Applications of Di ...
	WedPmPO2-Speech Analysis and Synthesis
	WedPmSS3-Content Understanding and Knowledge Modelling ...
	WedPmSS4-Poissonian Models for Signal and Image Process ...
	WedPmOR4-Performance of Communication Systems
	WedPmOR5-Signal Processing Applications
	WedPmOR6-Source Localization and Tracking
	WedPmPO3-Image Analysis
	WedPmPO4-Wavelet and Time-Frequency Signal Processing

	Thursday 9.9.2004
	ThuAmSS1-Maximum Usage of the Twisted Pair Copper Plant
	ThuAmSS2-Biometric Fusion
	ThuAmOR1-Filter Bank Design
	ThuAmOR2-Parameter, Spectrum, and Mode Estimation
	ThuAmOR3-Music Recognition
	ThuAmPO1-Image Coding and Visual Quality
	ThuAmPO2-Implementation Aspects in Signal Processing
	ThuAmSS3-Audio Signal Processing and Virtual Acoustics
	ThuAmSS4-Advances in Biometric Authentication and Recog ...
	ThuAmOR4-Decimation and Interpolation
	ThuAmOR5-Statistical Signal Modelling
	ThuAmOR6-Speech Enhancement and Restoration I
	ThuAmPO3-Image and Video Watermarking
	ThuAmPO4-FFT and DCT Realization
	ThuPmSS1-Information Transfer in Receivers for Concaten ...
	ThuPmSS2-New Directions in Time-Frequency Signal Proces ...
	ThuPmOR1-Adaptive Filters II
	ThuPmOR2-Pattern Recognition
	ThuPmOR3-Rapid Prototyping
	ThuPmPO1-Speech/Audio Coding and Watermarking
	ThuPmPO2-Independent Component Analysis, Blind Source S ...
	ThuPmSS3-Affine Covariant Regions for Object Recognitio ...
	ThuPmOR4-Source Coding and Data Compression
	ThuPmOR5-Augmented and Virtual 3D Audio
	ThuPmOR6-Instantaneous Frequency and Nonstationary Spec ...
	ThuPmPO3-Adaptive Filters III
	ThuPmPO4-MIMO and Space-Time Communications

	Friday 10.9.2004
	FriAmPS1-Getting to Grips with 3D Modelling
	FriAmSS1-Nonlinear Signal and Image Processing
	FriAmOR1-System Identification
	FriAmOR2-xDSL and DMT Systems
	FriAmOR3-Speech Enhancement and Restoration II
	FriAmOR4-Video Coding
	FriAmPO1-Loudspeaker and Microphone Array Signal Proces ...
	FriAmPO2-FPGA and SoC Realizations
	FriAmSS2-Nonlinear Speech Processing
	FriAmOR5-OFDM and MC-CDMA Systems
	FriAmOR6-Generic Audio Recognition
	FriAmOR7-Image Representation and Modelling
	FriAmOR8-Radar and Sonar
	FriAmPO3-Spectrum, Frequency, and DOA Estimation
	FriAmPO4-Biomedical Signal Processing
	FriPmSS1-DSP Applications in Advanced Radio Communicati ...
	FriPmOR1-Array Processing
	FriPmOR2-Sinusoidal Models for Music and Speech
	FriPmOR3-Recognizing Faces
	FriPmOR4-Video Indexing and Content Access

	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö

	Papers
	All papers
	Papers by Sessions
	Papers by Topics

	Topics
	1. DIGITAL SIGNAL PROCESSING
	1.1 Filter design and structures
	1.2 Fast algorithms
	1.3 Multirate filtering and filter banks
	1.4 Signal reconstruction
	1.5 Adaptive filters
	1.6 Sampling, Interpolation, and Extrapolation
	1.7 Other
	2. STATISTICAL SIGNAL AND ARRAY PROCESSING
	2.1 Spectral estimation
	2.2 Higher order statistics
	2.3 Array signal processing
	2.4 Statistical signal analysis
	2.5 Parameter estimation
	2.6 Detection
	2.7 Signal and system modeling
	2.8 System identification
	2.9 Cyclostationary signal analysis
	2.10 Source localization and separation
	2.11 Bayesian methods
	2.12 Beamforming, DOA estimation, and space-time adapti ...
	2.13 Multichannel signal processing
	2.14 Other
	3. SIGNAL PROCESSING FOR COMMUNICATIONS
	3.1 Signal coding, compression, and quantization
	3.2 Modulation, encoding, and multiplexing
	3.3 Channel modeling, estimation, and equalization
	3.4 Joint source - channel coding
	3.5 Multiuser communications
	3.6 Multicarrier systems
	3.7 Spread-spectrum systems and interference suppressio ...
	3.8 Performance analysis, optimization, and limits
	3.9 Broadband networks and subscriber loops
	3.10 Application-specific systems and implementations
	3.11 MIMO and Space-Time Processing
	3.12 Synchronization
	3.13 Cross-Layer Design
	3.14 Ultrawideband
	3.15 Other
	4. SPEECH PROCESSING
	4.1 Speech production and perception
	4.2 Speech analysis
	4.3 Speech synthesis
	4.4 Speech coding
	4.5 Speech enhancement and noise reduction
	4.6 Isolated word recognition and word spotting
	4.7 Continuous speech recognition
	4.8 Spoken language systems and dialog
	4.9 Speaker recognition and language identification
	4.10 Other
	5. AUDIO AND ELECTROACOUSTICS
	5.1 Active noise control and reduction
	5.2 Echo cancellation
	5.3 Psychoacoustics
	5.5 Audio coding
	5.6 Signal processing for music
	5.7 Binaural systems
	5.8 Augmented and virtual 3D audio
	5.9 Loudspeaker and Microphone Array Signal Processing
	5.10 Other
	6. IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING
	6.1 Image coding
	6.2 Computed imaging (SAR, CAT, MRI, ultrasound)
	6.3 Geophysical and seismic processing
	6.4 Image analysis and segmentation
	6.5 Image filtering, restoration and enhancement
	6.6 Image representation and modeling
	6.7 Digital transforms
	6.9 Multidimensional systems and signal processing
	6.10 Machine vision
	6.11 Pattern Recognition
	6.12 Digital Watermarking
	6.13 Image formation and computed imaging
	6.14 Image scanning, display and printing
	6.15 Other
	7. DSP IMPLEMENTATIONS, RAPID PROTOTYPING, AND TOOLS FO ...
	7.1 Architectures and VLSI hardware
	7.2 Programmable signal processors
	7.3 Algorithms and applications mappings
	7.4 Design methodology and rapid prototyping
	7.6 Fast algorithms
	7.7 Other
	8. SIGNAL PROCESSING APPLICATIONS
	8.1 Radar
	8.2 Sonar
	8.3 Biomedical processing
	8.4 Geophysical signal processing
	8.5 Underwater signal processing
	8.6 Sensing
	8.7 Robotics
	8.8 Astronomy
	8.9 Other
	9. VIDEO AND MULTIMEDIA SIGNAL PROCESSING
	9.1 Signal processing for media integration
	9.2 Components and technologies for multimedia systems
	9.4 Multimedia databases and file systems
	9.5 Multimedia communication and networking
	9.7 Applications
	9.8 Standards and related issues
	9.9 Video coding and transmission
	9.10 Video analysis and filtering
	9.11 Image and video indexing and retrieval
	10. NONLINEAR SIGNAL PROCESSING AND COMPUTATIONAL INTEL ...
	10.1 Nonlinear signals and systems
	10.2 Higher-order statistics and Volterra systems
	10.3 Information theory and chaos theory for signal pro ...
	10.4 Neural networks, models, and systems
	10.5 Pattern recognition
	10.6 Machine learning
	10.9 Independent component analysis and source separati ...
	10.10 Multisensor data fusion
	10.11 Other
	11. WAVELET AND TIME-FREQUENCY SIGNAL PROCESSING
	11.1 Wavelet Theory
	11.2 Gabor Theory
	11.3 Harmonic Analysis
	11.4 Nonstationary Statistical Signal Processing
	11.5 Time-Varying Filters
	11.6 Instantaneous Frequency Estimation
	11.7 Other
	12. SIGNAL PROCESSING EDUCATION AND TRAINING
	13. EMERGING TECHNOLOGIES

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Boaz Hirschl
	Leonid Yaroslavsky

