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ABSTRACT 
Nonlinear filters for image processing have attracted consid-
erable interest due to their ability to preserve edges, denoise 
images and to their potential for image enhancement and 
segmentation. One of the basic operations in nonlinear filter-
ing is sorting data from a 2-D sliding window. In this paper 
we propose a novel approach to hardware FPGA implemen-
tation of data sorting, suggest three implementations and 
compare them. 

1. INTRODUCTION 

Nonlinear filters constitute a wide family of filters with 
proven capabilities in image denoising, enhancement and 
segmentation [1]- [3]. The filters work in a sliding window 
and generate an estimate of the window central pixel by 
applying certain estimation operations to a subset of the 
window pixels. This subset is referred to as the central 
pixel’s neighbourhood  [2]. 
One of the fundamental operations involved in non-liner 
filtering is data sorting. Numerous methods have been sug-
gested for both software and hardware implementation of 
the sorting operation. The suggested architectures can be 
divided into two types: parallel and serial. Parallel sorters 
receive, in a parallel form, a vector of data and produce, 
after some processing time, the sorted output vector. These 
sorters are suitable for “off line” processing of the images, 
which are stored in memory. In  [4] a very large scale inte-
gration (VLSI) column sort architecture in which a sorter 
based on matrix of inputs and outputs with selection switch-
ing points is implemented to sort columns. This solution is 
compact, fast but supports a limited number of items. 
In our approach to parallel processing, the rank of each 
number is calculated  [2]. This results in a rank vector and 
enables easy extraction of any order statistics such as Min, 
Max, and Median values. To implement this approach, two 
stages of logic calculate each number’s rank. The first stage 
is either comparator or adder and the second stage is adder. 
The architecture is compact in terms of silicon resources. 
Serial sorters receive the data, one number or bit after the 
other. The serial sorters are well suited for real-time image 
capturing and transmission when the processor is a part of 
the data stream. In  [5], a serial sorting architecture of 
odd/even transpose is suggested. In  [6] a serial rank calcula-
tion is performed in order to convert input value to its rank. 
These sorters are recursive by their nature and each output 
vector is computed using previously computed vectors. A 
hybrid approach uses both serial and parallel architecture. A 

hybrid sorter combining a serial software sorter and parallel 
hardware architectures is evaluated in  [7].  
The architectures discussed in the paper,  sorters of N ele-
ments vector where nnN �� and n is the window size. In an 
actual application a pre-processor will arrange the two-
dimensional window into the input vector. The size of the 
vector can vary in a wide range limited only by silicon area.  
Serial sorters use a First In First Out (FIFO) buffers. Two 
FIFO algorithms are discussed. Serial FIFO sorter uses the 
magnitude attribute to insert each new pixel into its correct 
place. On the same cycle, during the complementing phase, 
the oldest pixel leaves the sorted array. A second implemen-
tation is a serial rank computer where each pixel that enters 
the array causes all the other pixel rank attributes to be up-
dated. In a similar fashion, the pixel, which is leaving, 
causes all the pixel rank attributes to be re-adjusted. This is 
an improvement of the system suggested in  [6]. 
In the work, VHDL sorter generator software was developed 
and used to generate the sorter’s VHDL files with variable 
window size. The WebPACK ISE 5.1.03i by Xilinx Soft-
ware Solutions was used for synthesis and implementation. 
The ModelSim SE/EE PLUS 5.4e by Model Technology 
along with Matlab by Mathworks was used for simulation 
and verification.  

2. PARALLEL RANK COMPUTER (PRC) 

The rank computer receives, in a parallel fashion, a vector of 
N numbers and produces their ranks in two clock cycles. By 
comparing every pair of numbers and summing the com-
parison values the rank of each number is calculated. Every 
pair of numbers is computed and the result is hard limited to 

1�  using a look-up table (LUT). All these results difference 
between, are accumulated in accordance with the index of 
the rank computed as is illustrated in Figure 1. 
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Figure 1: A Rank Computer for Three Numbers 
For the first element of the vector of elements, all the pairs 
that include the index ‘1’ subtractions (‘1-2’,’1 -3’) values 
are hard limited and accumulated giving the result of the 
elements rank. 
Hardware optimizing is shown in Figure 2 where, instead of 
adders, comparators are used. This implementation utilizes 
specific comparator cells that reside in the FPGA and  their 
one-bit outputs. 

Q

QS E T

C L R

D

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

1

3

2

Q

QS E T

C L R

D

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

>

�

�

�

Q

Q
S E T

C L R

D

Q

Q
S E T

C L R

D

Q

QS E T

C L R

D

Va lue R ankAdderCom para to r

>

>
1

0

0

0

1

1

0

0

0

0 1

2

0

 
Figure 2: Optimized Rank Computer 
In the second stage of the sorter, the adder is a simple adder 
that sums the comparators results and outputs the rank. 
The adder size depends on the number of elements N while 
latency is always two clock cycles. 

3. SERIAL FIFO SORTER (SFS) 

A First In First Out (FIFO) store input vector data in the 
order that it is received. The Serial FIFO Sorter (SFS) is 
different from regular FIFO in a way that the input vector 
data is ordered by its magnitude, still this data leave the 
sorter in a FIFO way. At each clock cycle, one number en-
ters its place in the sorter according to its value; on the same 
clock cycle, one number leaves the sorter. In Figure 3 b), 
when the number 5 enters the sorter from the left in the first 
phase of the clock, a shift to the right takes place. In Figure 
3 c) in the second phase of the clock, when ‘0’ leaves the 
FIFO,  the numbers are shifted back to the left.  
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Figure 3: An example of a Serial FIFO Sorter 
The sorter consists of two levels of memory elements to 
enable it to operate in one clock cycle. These two memory 

arrays, which work on the first and second phases of the 
clock respectively, are labeled “sorted vector” and “shadow 
sorted vector”. Each memory element stores both the value 
and the “age” of the number. The term “age” describes the 
order in which a number entered the FIFO. When a number 
enter the FIFO its age is one, each clock cycle the age is 
increased by one. When the age value is equal to the FIFO 
size the number should leave the FIFO and this value equal 
to the FIFO size is referred to as “retirement age”. The FIFO 
first out action is determined by the age attribute.  
The implementation of this sorter is based on a cell that in-
cludes memory elements: main and shadow ones and some 
logic elements to support the sort and shift operations. A 
schematic diagram of the sorter basic cell is shown in Figure 
4.The upper part is the main sort vector cell and the lower 
part is the shadow vector cell. In the first phase of the clock, 
the upper logic selects which value to transfer (A_out) to the 
lower part: the cell value, the new number in (B_in) or the 
number to the left of the cell (An-1,  a shift right operation). 
The main selector behavior is described by the formula:  

=
nAB �nA

1,
�

�� nn ABABO utA _
B

1�nA

1,
�

�� nn ABAB  

In the second phase, the lower logic selects which number 
(C_out) to transfer up, either the number in the cell or the 
number to the right (a shift left operation). The decision is 
based on the following rules: if the cell age reached the re-
tirement age then the number to the right � �1�nC  is shifted 
out. If a number was retired then again, the number to the 
right is shifted out; otherwise the current number is shifted 
out. The shadow selector behaves is described by the for-
mula:  

=

falsereteireAgeAge nretirementn ��
�1&nC

OutC _ retirementn AgeAge �1�nC
1�nC truereteiren �

�1  

The cells allow shift in both directions.  
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Figure 4: Serial FIFO Sorter Basic Cells 
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4. SERIAL RANK COMPUTER (SRC) 

A serial rank computer (SRC) operates on a FIFO basis that 
includes two attributes: value and rank. The algorithm of the 
implementation is based on  [6]. The SRC FIFO numbers are 
arranged according to their arrival sequence accompanying 
each number with its calculated rank, this is unlike SFS that 
order the numbers in the memory array according to their 
value. In Figure 5 we see the basic memory element that 
stores value and rank. In this example, the FIFO serial rank 
operator starts with [‘1’,’9’,’0’] and the respective ranks 
[‘1’,’2’,’0’]. As the numbers enter the array and leave the 
array of the sorter, the ranks are updated every clock cycle.  

V a l u e

R a n k

a )

b )

c )

   7   3   5   1   9   0

   7   3   5   1   9   0

   7   3   5   1   9   0

1
2

9
3

0
1

5
2

1
1

9
3

3
2

5
3

1
1

B a s i c  m e m o r y  e l e m e n t

C l o c k

C l o c k

C l o c k

N u m b e r  I n

F I F O
S a m p l i n g  t i m e
C u r r e n t  t im e

a )  a t  t h e  i n i t i a l  s t a t e  t h e  s o r t e r  i s  f i l l e d  w i t h  [ 1 , 9 , 0 ]  w i t h

c )  3  e n t e r s  t h e  s o r t e r ,   9  l e a v e s  t h e  s o r t e r .
b )  5  e n t e r s  t h e  s o r t e r ,  0  l e a v e s .

t h e  f o l l o w i n g  r a n k  [ 2 , 3 ,1 ]

S R C

 
Figure 5: Example of 3 Number Rank Sorter  
A group of rank cells forms the rank computer. The first 
rank cell calculates its rank by summing the results of the 
comparison of the new value to all the values in the sorter. 
The other rank cells compare their value to the new number 
and the oldest number that leaves the FIFO and adjust their 
rank accordingly. 
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Figure 6: First Rank Cell  
The first rank is created by summation of all the compari-
sons.  
The other rank cells calculate their rank as follows: 
 

=

Lastn RankRank ��1�� nn RankRank

nRank
nin AB �

nRank ninLastn ABRankRank �� ,
1�� nn RankRank  

This implementation includes (B_in) and the last cell rank 
(last_rank) inputs which are compared with the current cell 

and are used to control the adder and subtract shown in 
Figure 7.  
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Figure 7: Rank Cell 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

This section describes the results of the different experi-
ments with the three architectures on Xilinx VirtexE devices 
for different window sizes. The following acronyms will be 
used. 
SFS  – Serial FIFO Sorter 
PRC – Parallel Rank Computer 
SRC – Serial Rank Computer 
The benchmarks we examine are performance, speed, area, 
power and latency. The speed is measured in MHz and is 
dependent on the maximum delay between two state ele-
ments or one state element and Input/Output pin. Some of 
the speed results are normalized to the slowest implementa-
tion. The area is measured in FF numbers, LUT numbers 
and equivalent number of gates. The power is a function of 
area, frequency and activity factor. The latency is dependent 
on the architecture of the algorithm and can be constant for 
an algorithm or vary with different window sizes.  
�� Speed Analysis  

The sorter’s speed varies from 100Mhz to 200Mhz. For ref-
erence, an 8-bit counter that creates the data-sorted valid 
signal works at 300Mhz. The sorting speed is not a function 
of the window size. The speed comparison is presented in 
Table 1: for windows of up to 7x7. 

Algorithm Speed 
Serial FIFO Sorter (SFS) 1.2 

Parallel Rank Computer (PRC) 1.66 

Serial Rank Computer (SRC) 1 

Table 1. Algorithm Speed Comparison. Speed unit is 96Mhz 
The parallel algorithms are the fastest. The serial sorter is 
designed to sort in one clock cycle using both phases of the 
clock but the complexity of its cells causes more delays. The 
SRC is the most complex and therefore has the slowest ar-
chitecture. 
�� Area Analysis  

 The parameters that are obtained in the experiments are the 
number of FF, LUT and of gate equivalents. Table 2 shows 
the area for a 5x5 filter. We see that the SRC suggested in 
this paper is the most compact algorithm. The serial algo-
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rithms, both the SFS and the SRC, are quite compact. The 
PRC is compact and can compete with the serial algorithms. 
Table 2: Algorithms Area  for 5x5 Window 

 FF LUT Gates 
SFS 700 1875 18362 

PRC 450 3270 31547 

SRC 408 1302 14488 

Table 3 shows the required number of FF, LUT and gates 
per one window number. 
Table 3: Algorithms Area Comparison 

 FF  LUT Gates 
SFS )28( NO  )70( NO  )710( NO  

PRC 
� �)22

2
( NLOGN

N
O �

�
�

�

�

�
�

�

�  

 

)
2

8( 2NNNO ���

�
��

�

 

)160( 2NO  

SRC )16( NO  )52( NO  )582( NO  

 
The SFS consumes 28 FF per number (8 bits for value and 6 
bits for age (for 64�N ) in two cells - main and shadow ones, 
8 x 2 + 6 x 2 = 28). The PRC consumes � �)(2log

2
NN

��
�

�
�
�

� FF for 

each number. ( �
�

�
�
�

�

2
N for the number of pair comparators 

and � �)(log2 N for the rank FF at the rank adders). The SRC 
consumes 8 FFs for rank and 8 FFs for value. The silicon 
area required by the algorithms is dominated by two issues, 
logic and routing resources. The logic includes the LUTs 
and the FFs. Routing includes the internal metal connection 
between different logic elements and the pins connecting the 
FPGA to the outer world. 
For FIFO-type algorithms, the pin number and routing re-
sources are minimal and the bottleneck is the number of FFs 
and LUTs.  
In terms of FFs and LUTs FIFO-type algorithms linearly 
depends on the size of the vector processed. The parallel 
sorter number of FFs and LUTs increases in square ratio. 
�� Latency Analysis 

As a part of the validation suite a valid signal is created. The 
valid time is equal to the latency. Each algorithm implemen-
tation was accompanied with a counter that created this 
valid signal to enable verification. The counter value was 
calculated in the generation script and hard coded into the 
VHDL files.  
The serial algorithms latency is proportional to the number 
of stages in the FIFO. The parallel rank computer has a  
fixed latency of two clock cycles. 
�� Power Analysis   

The power consumed by the FPGA is divided into static and 
dynamic power consumption.  Static power consummation 
is caused by a current leakage on the devices and can be 

found in the data sheet for the VIRTEX family. Switching of 
transistors causes dynamic power consumption. Activity 
factor (AF) is a parameter that describes what percentage of 
the device is working in an average clock cycle. The algo-
rithm’s AF in most cases is 1 since the whole device is 
working all the time. The serial FIFO sorter works twice in 
each clock cycle but in each phase of the clock only half of 
the cell functions there fore the SFS AF is 2. 

6. CONCLUSIONS 

Three modifications of FPGA implementations of sorters for 
non-linear filters are suggested in this paper: 
�� Parallel Rank Computer 
�� Serial FIFO Sorter 
�� Serial FIFO Rank Computer. 

The implementations are compared in terms of: 
speed, area,  latency and power. 
It follows from the analysis that the speed differences are 
not high and the main issue is the FPGA device speed.  
The serial rank computer is the slowest and the simplest. 
The serial sorter is the middle in terms of size and speed. 
The parallel rank computer is the fastest implementation. 
The latency and size are linearly dependent on the window 

size for the serial algorithms. The size is )log(
2

2
NNN

�  pro-

portional to the window size in parallel algorithms. The par-
allel rank computer produces results in a small, fixed num-
ber of clock cycles. The power consumption is mainly a 
function of size and the parallel rank computer is the worst 
in this parameter. Advanced FPGA can sort parallel a 7 x 7 
window at 200 MHz, which is about 10 times faster than the 
2Ghz Pentium CPU. The work offer building blocks for 
non-liner filter set. 
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